Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014 (2014), Article ID 765413, 7 pages
http://dx.doi.org/10.1155/2014/765413
Research Article

Acupuncture Modulates the Functional Connectivity of the Default Mode Network in Stroke Patients

1Department of Neurology and Stroke Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
2Department of Radiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
3Department of Acupuncture, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
4The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710048, China

Received 28 December 2013; Revised 23 January 2014; Accepted 27 January 2014; Published 5 March 2014

Academic Editor: Baixiao Zhao

Copyright © 2014 Yong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Liu, B. Wu, W.-Z. Wang, L.-M. Lee, S.-H. Zhang, and L.-Z. Kong, “Stroke in China: epidemiology, prevention, and management strategies,” The Lancet Neurology, vol. 6, no. 5, pp. 456–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Executive summary: heart disease and stroke statistics-2012 update: a report from the American heart association,” Circulation, vol. 125, no. 1, pp. 188–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. G. A. Donnan, M. Fisher, M. Macleod, and S. M. Davis, “Stroke,” The Lancet, vol. 371, no. 9624, pp. 1612–1623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. “NIH consensus conference: acupuncture,” Journal of the American Medical Association, vol. 280, no. 17, pp. 1518–1524, 1998.
  5. J. C. Kong, M. S. Lee, B.-C. Shin, Y.-S. Song, and E. Ernst, “Acupuncture for functional recovery after stroke: a systematic review of sham-controlled randomized clinical trials,” Canadian Medical Association Journal, vol. 182, no. 16, pp. 1723–1729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Wu, E. Mills, D. Moher, and D. Seely, “Acupuncture in poststroke rehabilitation: a systematic review and meta-analysis of randomized trials,” Stroke, vol. 41, no. 4, pp. e171–e179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhang, H. Jin, D. Ma et al., “Efficacy of integrated rehabilitation techniques of traditional chinese medicine for ischemic stroke: a randomized controlled trial,” The American Journal of Chinese Medicine, vol. 41, no. 05, pp. 971–981, 2013. View at Google Scholar
  8. L. Bai and L. Lao, “Neurobiological foundations of acupuncture: the relevance and future prospect based on neuroimaging evidence,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID e812568, 9 pages, 2013. View at Publisher · View at Google Scholar
  9. L. Bai, W. Qin, J. Tian et al., “Time-varied characteristics of acupuncture effects in fMRI studies,” Human Brain Mapping, vol. 30, no. 11, pp. 3445–3460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Bai, J. Tian, C. Zhong et al., “Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study,” Molecular Pain, vol. 6, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Huang, D. Pach, V. Napadow et al., “Characterizing acupuncture stimuli using brain imaging with fMRI: a systematic review and meta-analysis of the literature,” PLoS ONE, vol. 7, no. 4, Article ID e32960, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-S. Yoo, E.-K. Teh, R. A. Blinder, and F. A. Jolesz, “Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study,” NeuroImage, vol. 22, no. 2, pp. 932–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. K. K. S. Hui, J. Liu, O. Marina et al., “The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI,” NeuroImage, vol. 27, no. 3, pp. 479–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M.-T. Wu, J.-C. Hsieh, J. Xiong et al., “Central nervous pathway for acupunture stimulation: localization of processing with functional MR imaging of the brain: preliminary experience,” Radiology, vol. 212, no. 1, pp. 133–141, 1999. View at Google Scholar · View at Scopus
  15. M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman, “A default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 676–682, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Bai, W. Qin, J. Tian et al., “Acupuncture modulates spontaneous activities in the anticorrelated resting brain networks,” Brain Research, vol. 1279, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. P. Dhond, C. Yeh, K. Park, N. Kettner, and V. Napadow, “Acupuncture modulates resting state connectivity in default and sensorimotor brain networks,” Pain, vol. 136, no. 3, pp. 407–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Liu, Y. Zhang, G. Zhou et al., “Partial correlation investigation on the default mode network involved in acupuncture: an fMRI study,” Neuroscience Letters, vol. 462, no. 3, pp. 183–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Tuladhar, L. Snaphaan, E. Shumskaya et al., “Default mode network connectivity in stroke patients,” PLoS ONE, vol. 8, no. 6, Article ID e66556, 2013. View at Google Scholar
  20. S. Lassalle-Lagadec, I. Sibon, B. Dilharreguy, P. Renou, O. Fleury, and M. Allard, “Subacute default mode network dysfunction in the prediction of post-stroke depression severity,” Radiology, vol. 264, no. 1, pp. 218–224, 2012. View at Google Scholar
  21. S. Whitfield-Gabrieli and J. M. Ford, “Default mode network activity and connectivity in psychopathology,” Annual Review of Clinical Psychology, vol. 8, no. 6, pp. 49–76, 2012. View at Google Scholar
  22. D. J. Mayer, “Acupuncture: an evidence-based review of the clinical literature,” Annual Review of Medicine, vol. 51, pp. 49–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhang, W. Qin, P. Liu et al., “An fMRI study of acupuncture using independent component analysis,” Neuroscience Letters, vol. 449, no. 1, pp. 6–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Qin, J. Tian, L. Bai et al., “FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network,” Molecular Pain, vol. 4, article 55, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. W. H. Organization, WHO Standard Acupuncture Point Locations in the Western Pacific Region, WHO Western Pacific Region, Geneva, Switzerland, 2008.
  26. J. Park, H. Park, H. Lee, S. Lim, K. Ahn, and H. Lee, “Deqi sensation between the acupuncture-experienced and the Naïve: a Korean study II,” The American Journal of Chinese Medicine, vol. 33, no. 2, pp. 329–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Witt, B. Brinkhaus, S. Jena et al., “Acupuncture in patients with osteoarthritis of the knee: a randomised trial,” The Lancet, vol. 366, no. 9480, pp. 136–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Bai, F. Cui, Y. Zou, and L. Lao, “Acupuncture De Qi in stable somatosensory stroke patients: relations with effective brain network for motor recovery,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID e197238, 9 pages, 2013. View at Publisher · View at Google Scholar
  29. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 253–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Grefkes and G. R. Fink, “Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches,” Brain, vol. 134, no. 5, pp. 1264–1276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Wang, C. Yu, H. Chen et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, vol. 133, no. 4, pp. 1224–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Calautti and J.-C. Baron, “Functional neuroimaging studies of motor recovery after stroke in adults: a review,” Stroke, vol. 34, no. 6, pp. 1553–1566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. You, L. Bai, R. Dai et al., “Altered Hub configurations within default mode network following acupuncture at ST36: a multimodal investigation combining fMRI and MEG,” PLoS ONE, vol. 8, no. 5, Article ID e64509, 2013. View at Google Scholar
  34. K. K. S. Hui, O. Marina, J. D. Claunch et al., “Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects,” Brain Research, vol. 1287, pp. 84–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. K. K. S. Hui, O. Marina, J. Liu, B. R. Rosen, and K. K. Kwong, “Acupuncture, the limbic system, and the anticorrelated networks of the brain,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Li, C. R. Jack Jr., and E. S. Yang, “An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients,” Journal of Magnetic Resonance Imaging, vol. 24, no. 5, pp. 1018–1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. D. Lee, J. S. Chon, H. K. Jeong et al., “The cerebrovascular response to traditional acupuncture after stroke,” Neuroradiology, vol. 45, no. 11, pp. 780–784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Schaechter, B. D. Connell, W. B. Stason et al., “Correlated change in upper limb function and motor cortex activation after verum and sham acupuncture in patients with chronic stroke,” Journal of Alternative and Complementary Medicine, vol. 13, no. 5, pp. 527–532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Bush, P. Luu, and M. I. Posner, “Cognitive and emotional influences in anterior cingulate cortex,” Trends in Cognitive Sciences, vol. 4, no. 6, pp. 215–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Lavin, C. Melis, E. Mikulan, C. Gelormini, D. Huepe, and A. Ibanez, “The anterior cingulate cortex: an integrative hub for human socially-driven interactions,” Frontiers in Neuroscience, vol. 7, no. 64, pp. 1–4, 2013. View at Google Scholar
  41. S. Treserras, K. Boulanouar, F. Conchou et al., “Transition from rest to movement: brain correlates revealed by functional connectivity,” NeuroImage, vol. 48, no. 1, pp. 207–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. P. A. van Meer, K. van der Marel, K. Wang et al., “Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity,” Journal of Neuroscience, vol. 30, no. 11, pp. 3964–3972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. B.-J. Na, G.-H. Jahng, S.-U. Park et al., “An fMRI study of neuronal specificity of an acupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its sham point,” Neuroscience Letters, vol. 464, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Yeo, S. Lim, I. H. Choe et al., “Acupuncture stimulation on GB34 activates neural responses associated with Parkinson's disease,” CNS Neuroscience and Therapeutics, vol. 18, no. 9, pp. 781–790, 2012. View at Google Scholar