Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2014, Article ID 979613, 11 pages
http://dx.doi.org/10.1155/2014/979613
Research Article

Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation

1Department of Biology and Biotechnology, “L. Spallanzani,” Pavia University, Via Ferrata 9, 27100 Pavia, Italy
2Department of Earth and Environmental Science, Pavia University, Pavia, Italy

Received 26 November 2013; Revised 6 February 2014; Accepted 6 March 2014; Published 1 April 2014

Academic Editor: Ulrike Lindequist

Copyright © 2014 Paola Rossi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kenttä and P. Hassmén, “Overtraining and recovery. A conceptual model,” Sports Medicine, vol. 26, no. 1, pp. 1–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. McKenzie, “Markers of excessive exercise,” Canadian Journal of Applied Physiology, vol. 24, no. 1, pp. 66–73, 1999. View at Google Scholar · View at Scopus
  3. J. B. Kreher and J. B. Schwartz, “Overtraining syndrome: a practical guide,” Sports Health, vol. 4, no. 2, pp. 128–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Halson and A. E. Jeukendrup, “Does overtraining exist? An analysis of overreaching and overtraining research,” Sports Medicine, vol. 34, no. 14, pp. 967–981, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Lehmann, C. Foster, and J. Keul, “Overtraining in endurance athletes: a brief review,” Medicine and Science in Sports and Exercise, vol. 25, no. 7, pp. 854–862, 1993. View at Google Scholar · View at Scopus
  6. A. Urhausen and W. Kindermann, “Diagnosis of overtraining: what tools do we have?” Sports Medicine, vol. 32, no. 2, pp. 95–102, 2002. View at Google Scholar · View at Scopus
  7. R. Meeusen, M. F. Piacentini, B. Busschaert, L. Buyse, G. de Schutter, and J. Stray-Gundersen, “Hormonal responses in athletes: the use of a two bout exercise protocol to detect subtle differences in (over) training status,” European Journal of Applied Physiology, vol. 91, no. 2-3, pp. 140–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. T. Chang and P. G. Miles, Mushrooms Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, CRC Press, LLC, 2nd edition, 2004.
  9. S. T. Chang and S. P. Wasser, “The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health,” International Journal of Medicinal Mushrooms, vol. 14, no. 2, pp. 95–134, 2012. View at Publisher · View at Google Scholar
  10. S. P. Wasser, “Medicinal mushroom science: history, current status, future trends and unsolved problems,” International Journal of Medicinal Mushrooms, vol. 12, no. 1, pp. 1–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. W. Kim and B. K. Kim, “Biomedical triterpenoids of Ganoderma lucidum (Curt.: Fr.) P. Karst,” International Journal of Medicinal Mushrooms, vol. 1, pp. 121–138, 1999. View at Google Scholar
  12. B. Boh, M. Berovic, J. Zhang, and L. Zhi-Bin, “Ganoderma lucidum and its pharmaceutically active compounds,” Biotechnology Annual Review, vol. 13, pp. 265–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S.-B. Lin, C.-H. Li, S.-S. Lee, and L.-S. Kan, “Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest,” Life Sciences, vol. 72, no. 21, pp. 2381–2390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. R. M. Paterson, “Ganoderma—a therapeutic fungal biofactory,” Phytochemistry, vol. 67, no. 18, pp. 1985–2001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Jones and K. K. Janardhanan, “Antioxidant and antitumor activity of Ganoderma lucidum (Curt: Fr) P. Karst-Reishi from South India,” International Journal of Medicinal Mushrooms, vol. 2, pp. 195–200, 2000. View at Google Scholar
  16. N. Sheena, B. Lakshmi, and K. K. Janardhanan, “Therapeutic potential of Ganoderma lucidum (Fr.) P. Karst,” Natural Product Radiance, vol. 4, pp. 382–386, 2005. View at Google Scholar
  17. C.-F. Kuo, C.-C. Chen, Y.-H. Luo et al., “Cordyceps sinensis mycelium protects mice from group A streptococcal infection,” Journal of Medical Microbiology, vol. 54, no. 8, pp. 795–802, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhou, Z. Gong, Y. Su, J. Lin, and K. Tang, “Cordyceps fungi: natural products, pharmacological functions and developmental products,” Journal of Pharmacy and Pharmacology, vol. 61, no. 3, pp. 279–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gatti and E. F. de Palo, “An update: salivary hormones and physical exercise,” Scandinavian Journal of Medicine and Science in Sports, vol. 21, no. 2, pp. 157–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Jakicic, M. Marcus, K. I. Gallagher et al., “Evaluation of the SenseWear pro Armband to assess energy expenditure during exercise,” Medicine and Science in Sports and Exercise, vol. 36, no. 5, pp. 897–904, 2004. View at Google Scholar · View at Scopus
  21. A.-S. Brazeau, A. D. Karelis, D. Mignault, M.-J. Lacroix, D. Prudhomme, and R. Rabasa-Lhoret, “Accuracy of the SenseWear Armbandduring ergocycling,” International Journal of Sports Medicine, vol. 32, no. 10, pp. 761–764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Arakawa, M. Maeda, and A. Tsuji, “Chemiluminescence enzyme immunoassay of cortisol using peroxidase as label,” Analytical Biochemistry, vol. 97, no. 2, pp. 248–254, 1979. View at Google Scholar · View at Scopus
  23. U. M. Joshi, H. P. Shah, and S. P. Sudhama, “A sensitive and specific enzymeimmunoassay for serum testosterone,” Steroids, vol. 34, no. 1, pp. 35–46, 1979. View at Google Scholar · View at Scopus
  24. T. Atsumi, I. Iwakura, Y. Kashiwagi, S. Fujisawa, and T. Ueha, “Free radical scavenging activity in the nonenzymatic fraction of human saliva: a simple DPPH assay showing the effect of physical exercise,” Antioxidants and Redox Signaling, vol. 1, no. 4, pp. 537–546, 1999. View at Google Scholar · View at Scopus
  25. P. Abidi, H. Zhang, S. M. Zaidi et al., “Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway,” Journal of Endocrinology, vol. 198, no. 1, pp. 193–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Marzatico, “Brain oxidative damage in emotional stress,” Annals of the New York Academy of Sciences, vol. 851, pp. 439–443, 1998. View at Google Scholar
  27. A. Zafir and N. Banu, “Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats,” Stress, vol. 12, no. 2, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Peake, K. Suzuki, and J. S. Coombes, “The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise,” The Journal of Nutritional Biochemistry, vol. 18, no. 6, pp. 357–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Demirbag, R. Yilmaz, and O. Erel, “The association of total antioxidant capacity with sex hormones,” Scandinavian Cardiovascular Journal, vol. 39, no. 3, pp. 172–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. Jackson, “Exercise and oxygen radical production by muscle,” in Handbook of Oxidants and Antioxidants in Exercise, C. K. Sen, L. Packer, and O. Hanninen, Eds., pp. 57–68, Elsevier Science, Amsterdam, The Netherlands, 2000. View at Google Scholar
  31. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  32. C. J. Krumbach, D. R. Ellis, and J. A. Driskell, “A report of vitamin and mineral supplement use among university athletes in a division I institution,” International Journal of Sport Nutrition, vol. 9, no. 4, pp. 416–425, 1999. View at Google Scholar · View at Scopus
  33. R. J. Maughan, F. Depiesse, and H. Geyer, “The use of dietary supplements by athletes,” Journal of Sports Sciences, vol. 25, no. 1, pp. 103–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M.-C. Gomez-Cabrera, C. Borrás, F. V. Pallardo, J. Sastre, L. L. Ji, and J. Viña, “Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats,” The Journal of Physiology, vol. 567, no. 1, pp. 113–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Lamprecht, P. Hofmann, J. F. Greilberger, and G. Schwaberger, “Increased lipid peroxidation in trained men after 2 weeks of antioxidant supplementation,” International Journal of Sport Nutrition & Exercise Metabolism, vol. 19, no. 4, pp. 385–399, 2009. View at Google Scholar · View at Scopus
  36. S. Chen, Z. Li, R. Krochmal, M. Abrazado, W. Kim, and C. B. Cooper, “Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial,” Journal of Alternative and Complementary Medicine, vol. 16, no. 5, pp. 585–590, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Kumar, P. S. Negi, B. Singh, G. Ilavazhagan, K. Bhargava, and N. K. Sethy, “Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators,” Journal of Ethnopharmacology, vol. 136, no. 1, pp. 260–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Y. Hui, B.-S. Wang, C. H. Shiow, and P.-D. Duh, “Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage,” Journal of Agricultural and Food Chemistry, vol. 54, no. 8, pp. 3132–3138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. P. Li, P. Li, T. T. X. Dong, and K. W. K. Tsim, “Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia,” Phytomedicine, vol. 8, no. 3, pp. 207–212, 2001. View at Google Scholar · View at Scopus
  40. Y. Yamaguchi, S. Kagota, K. Nakamura, K. Shinozuka, and M. Kunitomo, “Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis,” Phytotherapy Research, vol. 14, pp. 647–649, 2000. View at Google Scholar
  41. H. Yegenoglu, B. Aslim, and F. Oke, “Comparison of antioxidant capacities of Ganoderma lucidum (Curtis) P. Karst and Funalia trogii (Berk.) Bondartsev & Singer by using different in vitro methods,” Journal of Medicinal Food, vol. 14, no. 5, pp. 512–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. T. P. Smina, J. Mathew, K. K. Janardhanan, and T. P. A. Devasagayam, “Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India,” Environmental Toxicology and Pharmacology, vol. 32, no. 3, pp. 438–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Saltarelli, P. Ceccaroli, M. Iotti et al., “Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy,” Food Chemistry, vol. 116, no. 1, pp. 143–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. S. Stojković, L. Barros, C. Ricardo et al., “A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins,” International Journal of Food Sciences and Nutrition, vol. 65, no. 1, pp. 42–47, 2014. View at Publisher · View at Google Scholar
  45. U. Lindequist, “The merit of medicinal mushrooms from a pharmaceutical point of view,” in Proceedings of the 7th International Medicinal Mushroom Conference (IMMC '13), pp. 415–422, Beijing, China, August 2013.