Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2015 (2015), Article ID 276263, 8 pages
http://dx.doi.org/10.1155/2015/276263
Research Article

Danhong Promotes Angiogenesis in Diabetic Mice after Critical Limb Ischemia by Activation of CSE-H2S-VEGF Axis

1Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Huangpu District, Shanghai 200003, China
2Department of Cardiology, Fuzhou General Hospital of Nanjing Military Command, No. 156, Xi Erhuan North Road, Fuzhou, Fujian 350025, China

Received 14 May 2015; Revised 21 August 2015; Accepted 6 September 2015

Academic Editor: Honglin Luo

Copyright © 2015 Feng Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Raval and D. W. Losordo, “Cell therapy of peripheral arterial disease: from experimental findings to clinical trials,” Circulation Research, vol. 112, no. 9, pp. 1288–1302, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Kota, L. K. Meher, S. Sahoo, S. Mohapatra, and K. D. Modi, “Surgical revascularization techniques for diabetic foot,” Journal of Cardiovascular Disease Research, vol. 4, no. 2, pp. 79–83, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. R. G. Katare and P. Madeddu, “Pericytes from human veins for treatment of myocardial ischemia,” Trends in Cardiovascular Medicine, vol. 23, no. 3, pp. 66–70, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Liu, G. H. Tang, Y. H. Sun et al., “The protective role of Tongxinluo on blood-brain barrier after ischemia-reperfusion brain injury,” Journal of Ethnopharmacology, vol. 148, no. 2, pp. 632–639, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Guan, Y. Yin, Y.-R. Zhu et al., “Dissection of mechanisms of a Chinese medicinal formula: danhong injection therapy for myocardial ischemia/reperfusion injury in vivo and in vitro,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 972370, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. L.-N. Gao, Y.-L. Cui, Q.-S. Wang, and S.-X. Wang, “Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy,” Journal of Ethnopharmacology, vol. 149, no. 3, pp. 772–782, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-T. Liu, Y.-F. Wang, O. Olaleye et al., “Characterization of in vivo antioxidant constituents and dual-standard quality assessment of Danhong injection,” Biomedical Chromatography, vol. 27, no. 5, pp. 655–663, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. He, H. Wan, Y. Du et al., “Protective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats,” Journal of Ethnopharmacology, vol. 144, no. 2, pp. 387–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H.-Q. Wang, J.-J. Zou, X.-H. Zhou, L.-N. Ji, and Z.-M. Liu, “Effects of Chinese medicine Tongxinluo on hyperglycemia and beta-cell damage in streptozotocin-induced diabetic rats,” Chinese Medical Journal, vol. 125, no. 20, pp. 3675–3680, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Wu, X. M. Zhang, and B. Zhang, “Danhong injection in the treatment of acute coronary syndrome: a systematic review and meta-analysis,” The American Journal of Chinese Medicine, vol. 43, no. 2, pp. 199–214, 2015. View at Publisher · View at Google Scholar
  11. X. Liu, Z. Wu, K. Yang, H. Ding, and Y. Wu, “Quantitative analysis combined with chromatographic fingerprint for comprehensive evaluation of Danhong injection using HPLC-DAD,” Journal of Pharmaceutical and Biomedical Analysis, vol. 76, pp. 70–74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Limbourg, T. Korff, L. C. Napp, W. Schaper, H. Drexler, and F. P. Limbourg, “Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia,” Nature Protocols, vol. 4, no. 12, pp. 1737–1748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yan, G. Tie, S. Wang et al., “Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice,” Journal of the American Heart Association, vol. 1, no. 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P.-H. Huang, C.-P. Lin, C.-H. Wang et al., “Niacin improves ischemia-induced neovascularization in diabetic mice by enhancement of endothelial progenitor cell functions independent of changes in plasma lipids,” Angiogenesis, vol. 15, no. 3, pp. 377–389, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. T. S. Westvik, T. N. Fitzgerald, A. Muto et al., “Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis,” Journal of Vascular Surgery, vol. 49, no. 2, pp. 464–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. S. Han, J. H. Lee, J. S. Jung et al., “Fucoidan protects mesenchymal stem cells against oxidative stress and enhances vascular regeneration in a murine hindlimb ischemia model,” International Journal of Cardiology, vol. 198, pp. 187–195, 2015. View at Publisher · View at Google Scholar
  17. X. Shen, C. B. Pattillo, S. Pardue, S. C. Bir, R. Wang, and C. G. Kevil, “Measurement of plasma hydrogen sulfide in vivo and in vitro,” Free Radical Biology and Medicine, vol. 50, no. 9, pp. 1021–1031, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Potenza, G. Guerra, D. Avanzato et al., “Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors,” Cell Calcium, vol. 56, no. 3, pp. 225–234, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. Bir, G. K. Kolluru, P. McCarthy et al., “Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis,” Journal of the American Heart Association, vol. 1, no. 5, Article ID e004093, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Ruel and F. W. Sellke, “Angiogenic protein therapy,” Seminars in Thoracic and Cardiovascular Surgery, vol. 15, no. 3, pp. 222–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. H. Annex and M. Simons, “Growth factor-induced therapeutic angiogenesis in the heart: protein therapy,” Cardiovascular Research, vol. 65, no. 3, pp. 649–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ylä-Herttuala and K. Alitalo, “Gene transfer as a tool to induce therapeutic vascular growth,” Nature Medicine, vol. 9, no. 6, pp. 694–701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Menasche, “Cell therapy for peripheral arterial disease,” Current Opinion in Molecular Therapeutics, vol. 12, no. 5, pp. 538–545, 2010. View at Google Scholar
  24. F. Hu, C.-M. Koon, J. Y. Chan, K.-M. Lau, and K.-P. Fung, “The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury,” BMC Complementary and Alternative Medicine, vol. 12, article no. 249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Zhou, L.-F. He, Y.-J. Li, Y. Shen, R.-B. Chao, and J.-R. Du, “Cardioprotective effect of water and ethanol extract of Salvia miltiorrhiza in an experimental model of myocardial infarction,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 440–446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Y. Chiu, S. M. Wong, H. Y. Leung et al., “Acute treatment with Danshen-Gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive PKCε/mK ATP pathway in rats,” Phytomedicine, vol. 18, no. 11, pp. 916–925, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-Y. Han, H.-X. Li, X. Ma, K. Zhang, Z.-Z. Ma, and P.-F. Tu, “Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro,” Phytomedicine, vol. 16, no. 8, pp. 694–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-Y. Han, H.-X. Li, X. Ma et al., “Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats,” Journal of Ethnopharmacology, vol. 145, no. 3, pp. 722–727, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. L. Guo, Y. Zhu, X. T. Su et al., “DanHong injection dose-dependently varies amino acid metabolites and metabolic pathways in the treatment of rats with cerebral ischemia,” Acta Pharmacologica Sinica, vol. 36, no. 6, pp. 748–757, 2015. View at Publisher · View at Google Scholar
  30. M. Liu, Q. Pan, Y. Chen et al., “Administration of Danhong Injection to diabetic db/db mice inhibits the development of diabetic retinopathy and nephropathy,” Scientific Reports, vol. 5, article 11219, 2015. View at Publisher · View at Google Scholar