Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016 (2016), Article ID 2935403, 8 pages
http://dx.doi.org/10.1155/2016/2935403
Research Article

Medicinal Plants of the Australian Aboriginal Dharawal People Exhibiting Anti-Inflammatory Activity

1Department of Pharmacology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
2Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
3National Institute of Complementary Medicine, Western Sydney University, Sydney, NSW, Australia

Received 12 August 2016; Accepted 29 November 2016

Academic Editor: Genevieve Steiner

Copyright © 2016 Most A. Akhtar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Fürst and I. Zündorf, “Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress,” Mediators of Inflammation, vol. 2014, Article ID 146832, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Münch, R. Schinzel, C. Loske et al., “Alzheimer's disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts,” Journal of Neural Transmission, vol. 105, no. 4-5, pp. 439–461, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Retz, W. Gsell, G. Münch, M. Rösler, and P. Riederer, “Free radicals in Alzheimer's disease,” Journal of Neural Transmission, Supplement, no. 54, pp. 221–236, 1998. View at Google Scholar · View at Scopus
  4. C. Millington, S. Sonego, N. Karunaweera et al., “Chronic neuroinflammation in Alzheimer's disease: new perspectives on animal models and promising candidate drugs,” BioMed Research International, vol. 2014, Article ID 309129, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Münch, J. Thome, P. Foley, R. Schinzel, and P. Riederer, “Advanced glycation endproducts in ageing and Alzheimer's disease,” Brain Research Reviews, vol. 23, no. 1-2, pp. 134–143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Fuller, G. Münch, and M. Steele, “Activated astrocytes: a therapeutic target in Alzheimer's disease?” Expert Review of Neurotherapeutics, vol. 9, no. 11, pp. 1585–1594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Fuller, M. Steele, and G. Münch, “Activated astroglia during chronic inflammation in Alzheimer's disease—do they neglect their neurosupportive roles?” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 690, no. 1-2, pp. 40–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Münch, J. Gasic-Milenkovic, S. Dukic-Stefanovic et al., “Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells,” Experimental Brain Research, vol. 150, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. K. Kern, D. A. Geier, L. K. Sykes, and M. R. Geier, “Evidence of neurodegeneration in autism spectrum disorder,” Translational Neurodegeneration, vol. 2, no. 1, article 17, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Qian, P. M. Flood, and J.-S. Hong, “Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy,” Journal of Neural Transmission, vol. 117, no. 8, pp. 971–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Stuchbury and G. Münch, “Alzheimer's associated inflammation, potential drug targets and future therapies,” Journal of Neural Transmission, vol. 112, no. 3, pp. 429–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Venigalla, E. Gyengesi, M. J. Sharman, and G. Münch, “Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer's disease,” Neurochemistry International, vol. 95, pp. 63–74, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Mrak and W. S. T. Griffin, “Potential Inflammatory biomarkers in Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 8, no. 4, pp. 369–375, 2005. View at Google Scholar · View at Scopus
  14. A. Wong, H.-J. Lüth, W. Deuther-Conrad et al., “Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer's disease,” Brain Research, vol. 920, no. 1-2, pp. 32–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-J. Lüth, G. Münch, and T. Arendt, “Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation,” Brain Research, vol. 953, no. 1-2, pp. 135–143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Münch, W. Deuther-Conrad, and J. Gasic-Milenkovic, “Glycoxidative stress creates a vicious cycle of neurodegeneration in Alzheimer's disease—a target for neuroprotective treatment strategies?” Journal of Neural Transmission, Supplement, no. 62, pp. 303–307, 2002. View at Google Scholar · View at Scopus
  17. H.-J. Lüth, V. Ogunlade, B. Kuhla et al., “Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer's disease brains,” Cerebral Cortex, vol. 15, no. 2, pp. 211–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Krautwald and G. Münch, “Advanced glycation end products as biomarkers and gerontotoxins—a basis to explore methylglyoxal-lowering agents for Alzheimer's disease?” Experimental Gerontology, vol. 45, no. 10, pp. 744–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Patel, S. D. Rees, M. A. Kelly et al., “Genetic variants conferring susceptibility to Alzheimer's disease in the general population; do they also predispose to dementia in Down's syndrome,” BMC Research Notes, vol. 7, no. 1, article no. 42, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Heneka, D. T. Golenbock, and E. Latz, “Innate immunity in Alzheimer's disease,” Nature Immunology, vol. 16, no. 3, pp. 229–236, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Steiner, R. Balez, N. Karunaweera, J. M. Lind, G. Münch, and L. Ooi, “Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia,” Neurochemistry International, vol. 95, pp. 46–54, 2016. View at Publisher · View at Google Scholar
  22. R. Balez, N. Steiner, M. Engel et al., “Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease,” Scientific Reports, vol. 6, Article ID 31450, 2016. View at Publisher · View at Google Scholar
  23. M. Venigalla, E. Gyengesi, and G. Münch, “Curcumin and apigenin—novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease,” Neural Regeneration Research, vol. 10, no. 8, pp. 1181–1185, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Williams, G. Münch, E. Gyengesi, and L. Bennett, “Bacopamonnieri (L.) exerts anti-inflammatory effects on cells of the innate immune system in vitro,” Food and Function, vol. 5, no. 3, pp. 517–520, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Apetz, G. Münch, S. Govindaraghavan, and E. Gyengesi, “Natural compounds and plant extracts as therapeutics against chronic inflammation in Alzheimer’s disease—a translational perspective,” CNS and Neurological Disorders—Drug Targets, vol. 13, no. 7, pp. 1175–1191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. N. T. Q. Nguyen, L. Ooi, S. C. Piller, and G. Münch, “Proenergetic effects of resveratrol in the murine neuronal cell line Neuro2a,” Molecular Nutrition & Food Research, vol. 57, no. 11, pp. 1901–1907, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Raju, D. Gunawardena, M. Ahktar, M. Low, P. Reddell, and G. Münch, “Anti-inflammatory chemical profiling of the Australian rainforest tree Alphitonia petriei (Rhamnaceae),” Molecules, vol. 21, no. 11, p. 1521, 2016. View at Publisher · View at Google Scholar
  28. D. Gunawardena, N. Karunaweera, S. Lee et al., “Anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts - Identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds,” Food and Function, vol. 6, no. 3, pp. 910–919, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. D. E. Griswold, L. M. Hillegass, J. J. Breton, K. M. Esser, and J. L. Adams, “Differentiation in vivo of classical non-steroidal antiinflammatory drugs from cytokine suppressive antiinflammatory drugs and other pharmacological classes using mouse tumour necrosis factor alpha production,” Drugs under Experimental and Clinical Research, vol. 19, no. 6, pp. 243–248, 1993. View at Google Scholar · View at Scopus
  30. C. Denkert, I. Koch, S. Berger, M. Köbel, A. Siegert, and S. Hauptmann, “Cytokine-suppressive anti-inflammatory drugs (CSAIDs) inhibit invasion and MMP-1 production of ovarian carcinoma cells,” Cancer Letters, vol. 195, no. 1, pp. 101–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Berbaum, K. Shanmugam, G. Stuchbury, F. Wiede, H. Körner, and G. Münch, “Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array,” Cytokine, vol. 41, no. 3, pp. 198–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Gasic-Milenkovic, S. Dukic-Stefanovic, W. Deuther-Conrad, U. Gärtner, and G. Münch, “β-amyloid peptide potentiates inflammatory responses induced by lipopolysaccharide, interferon -γ and 'advanced glycation endproducts' in a murine microglia cell line,” European Journal of Neuroscience, vol. 17, no. 4, pp. 813–821, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Wong, S. Dukic-Stefanovic, J. Gasic-Milenkovic et al., “Anti-inflammatory antioxidants attenuate the expression of inducible nitric oxide synthase mediated by advanced glycation endproducts in murine microglia,” European Journal of Neuroscience, vol. 14, no. 12, pp. 1961–1967, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Low, C. S. Khoo, G. Münch, S. Govindaraghavan, and N. J. Sucher, “An in vitro study of anti-inflammatory activity of standardised Andrographis paniculata extracts and pure andrographolide,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, article no. 18, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Karunaweera, R. Raju, E. Gyengesi, and G. Munch, “Plant polyphenols as inhibitors of nf-κb induced cytokine production—a potential anti-inflammatory treatment for alzheimer’s disease?” Frontiers in Molecular Neuroscience, vol. 8, article no. 24, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Hansen, M. Krautwald, A. E. MacZurek et al., “A versatile high throughput screening system for the simultaneous identification of anti-inflammatory and neuroprotective compounds,” Journal of Alzheimer's Disease, vol. 19, no. 2, pp. 451–464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Dugasani, M. R. Pichika, V. D. Nadarajah, M. K. Balijepalli, S. Tandra, and J. N. Korlakunta, “Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 515–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. A. Zakaria, A. S. Mohamad, C. T. Chear, Y. Y. Wong, D. A. Israf, and M. R. Sulaiman, “Antiinflammatory and antinociceptive activities of zingiber zerumbet methanol extract in experimental model systems,” Medical Principles and Practice, vol. 19, no. 4, pp. 287–294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Haridas, C. J. Arntzen, and J. U. Gutterman, “Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-κB by inhibiting both its nuclear localization and ability to bind DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11557–11562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. R. W. Li, D. N. Leach, S. P. Myers et al., “Anti-inflammatory activity, cytotoxicity and active compounds of Tinospora smilacina Benth,” Phytotherapy Research, vol. 18, no. 1, pp. 78–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Tan, I. Konczak, I. Ramzan, D. Zabaras, and D. M.-Y. Sze, “Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of Kakadu plum and Illawarra plum polyphenolic fractions,” Nutrition and Cancer, vol. 63, no. 7, pp. 1074–1084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. P. Sweeney, S. G. Wyllie, R. A. Shalliker, and J. L. Markham, “Xanthine oxidase inhibitory activity of selected Australian native plants,” Journal of Ethnopharmacology, vol. 75, no. 2-3, pp. 273–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Byard, “Traditional medicine of aboriginal Australia,” Canadian Medical Association Journal, vol. 139, no. 8, pp. 792–794, 1988. View at Google Scholar · View at Scopus
  44. P. H. Hart, C. Brand, C. F. Carson, T. V. Riley, R. H. Prager, and J. J. Finlay-Jones, “Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes,” Inflammation Research, vol. 49, no. 11, pp. 619–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. U. R. Juergens, “Anti-inflammatory properties of the monoterpene 18-cineole: current evidence for co-medication in inflammatory airway diseases,” Drug Research, vol. 64, no. 12, pp. 638–646, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. J. O'Brien, I. Wilson, T. Orton, and F. Pognan, “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity,” European Journal of Biochemistry, vol. 267, no. 17, pp. 5421–5426, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. U. R. Juergens, M. Stöber, and H. Vetter, “Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro,” European Journal of Medical Research, vol. 3, no. 11, pp. 508–510, 1998. View at Google Scholar · View at Scopus
  48. U. R. Juergens, U. Dethlefsen, G. Steinkamp, A. Gillissen, R. Repges, and H. Vetter, “Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial,” Respiratory Medicine, vol. 97, no. 3, pp. 250–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Yu, S. Mandlekar, W. Lei, W. E. Fahl, T.-H. Tan, and A.-N. T. Kong, “p38 Mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens,” The Journal of Biological Chemistry, vol. 275, no. 4, pp. 2322–2327, 2000. View at Publisher · View at Google Scholar · View at Scopus