Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016 (2016), Article ID 3169751, 11 pages
http://dx.doi.org/10.1155/2016/3169751
Research Article

Evaluation of the Antioxidant Capacities and Cytotoxic Effects of Ten Parmeliaceae Lichen Species

1Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
2Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain

Received 31 July 2016; Revised 28 October 2016; Accepted 8 November 2016

Academic Editor: Michał Tomczyk

Copyright © 2016 C. Fernández-Moriano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Hawksworth and R. Honegger, “The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers,” in Plant Galls: Organisms, Interactions, Populations, M. A. J. Williams, Ed., pp. 77–98, Clarendon Press, Oxford, UK, 1994. View at Google Scholar
  2. M. C. Molina, R. Del-Prado, P. K. Divakar, D. Sánchez-Mata, and A. Crespo, “Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae),” Organisms Diversity & Evolution, vol. 11, no. 5, pp. 331–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Honegger, “The lichen symbiosis—what is so spectacular about it?” Lichenologist, vol. 30, no. 3, pp. 193–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Thell, A. Crespo, P. K. Divakar et al., “A review of the lichen family parmeliaceae—history, phylogeny and current taxonomy,” Nordic Journal of Botany, vol. 30, no. 6, pp. 641–664, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Crespo, H. T. Lumbsch, J.-E. Mattsson et al., “Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene,” Molecular Phylogenetics and Evolution, vol. 44, no. 2, pp. 812–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Malhotra, R. Subban, and A. Singh, “Lichens-role in traditional medicine and drug discovery,” The Internet Journal of Alternative Medicine, vol. 5, no. 2, pp. 1–5, 2008. View at Google Scholar
  7. M. P. Gómez-Serranillos, C. Fernández-Moriano, E. González-Burgos, P. K. Divakar, and A. Crespo, “Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features,” RSC Advances, vol. 4, no. 103, pp. 59017–59047, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Molnár and E. Farkas, “Current results on biological activities of lichen secondary metabolites: a review,” Journal of Biosciences, vol. 65, no. 3-4, pp. 157–173, 2010. View at Google Scholar · View at Scopus
  9. E. Stocker-Wörgötter, “Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes,” Natural Product Reports, vol. 25, no. 1, pp. 188–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Shukla, G. P. Joshi, and M. S. M. Rawat, “Lichens as a potential natural source of bioactive compounds: a review,” Phytochemistry Reviews, vol. 9, no. 2, pp. 303–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Ranković, M. Mišić, and S. Sukdolak, “Antimicrobial activity of extracts of the lichens Cladonia furcata, Parmelia caperata, Parmelia pertusa, Hypogymnia physodes and Umbilicaria polyphylla,” British Journal of Biomedical Science, vol. 64, no. 4, pp. 143–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Mitrovic, S. Stamenkovic, V. Cvetkovic, M. Nikolic, S. Tosic, and D. Stojicic, “Lichens as source of versatile bioactive compounds,” Biologica Nyssana, vol. 2, pp. 1–6, 2011. View at Google Scholar
  13. M. M. Kosanić, B. R. Ranković, and T. P. Stanojković, “Antioxidant, antimicrobial and anticancer activities of three Parmelia species,” Journal of the Science of Food and Agriculture, vol. 92, no. 9, pp. 1909–1916, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Fernández-Moriano, M. P. Gómez-Serranillos, and A. Crespo, “Antioxidant potential of lichen species and their secondary metabolites. a systematic review,” Pharmaceutical Biology, vol. 54, no. 1, pp. 1–17, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 4th edition, 2007.
  16. S. Gandhi and A. Y. Abramov, “Mechanism of oxidative stress in neurodegeneration,” Oxidative medicine and cellular longevity, vol. 2012, p. 428010, 2012. View at Google Scholar · View at Scopus
  17. R. Thanan, S. Oikawa, Y. Hiraku et al., “Oxidative stress and its significant roles in neurodegenerative diseases and cancer,” International Journal of Molecular Sciences, vol. 16, no. 1, pp. 193–217, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Friedman, “Why is the nervous system vulnerable to oxidative stress?” in Oxidative Stress and Free Radical Damage in Neurology, Oxidative Stress in Applied Basic Research and Clinical Practice, N. Gadoth and Göbel, Eds., Springer Science, Business Media, LLC, 2011. View at Google Scholar
  19. C. Guerra-Araiza, A. L. Álvarez-Mejía, S. Sánchez-Torres et al., “Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases,” Free Radical Research, vol. 47, no. 6-7, pp. 451–462, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Solanki, P. Parihar, M. L. Mansuri, and M. S. Parihar, “Flavonoid-based therapies in the early management of neurodegenerative diseases,” Advances in Nutrition, vol. 6, no. 1, pp. 64–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Tellone, A. Galtieri, A. Russo, B. Giardina, and S. Ficarra, “Resveratrol: a focus on several neurodegenerative diseases,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 392169, 14 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. V. K. Gupta, M. P. Darokar, D. Saikia, A. Pal, A. Fatima, and S. P. S. Khanuja, “Antimycobacterial activity of lichens,” Pharmaceutical Biology, vol. 45, no. 3, pp. 200–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. S. Anil Kumar, T. R. Prashith Kekuda, K. S. Vinayaka, D. Swathi, and T. M. Venugopal, “Anti-obesity (Pancreatic lipase inhibitory) activity of Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae),” Pharmacognosy Journal, vol. 3, no. 19, pp. 65–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Fernández-Moriano, P. K. Divakar, A. Crespo, and M. P. Gómez-Serranillos, “Neuroprotective activity and cytotoxic potential of two parmeliaceae lichens: identification of active compounds,” Phytomedicine, vol. 22, no. 9, pp. 847–855, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Dávalos, C. Gómez-Cordovés, and B. Bartolomé, “Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay,” Journal of Agricultural and Food Chemistry, vol. 52, no. 1, pp. 48–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Amarowicz, R. B. Pegg, P. Rahimi-Moghaddam, B. Barl, and J. A. Weil, “Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies,” Food Chemistry, vol. 84, no. 4, pp. 551–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. F. J. Sánchez-Muniz, R. Olivero-David, M. Triki et al., “Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage,” Food Research International, vol. 48, no. 2, pp. 909–915, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Folin and V. Ciocalteu, “On tyrosine and tryptophane determinations in proteins,” The Journal of Biological Chemistry, vol. 73, pp. 627–650, 1927. View at Google Scholar
  29. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Stojanović, I. Stojanović, V. Stankov-Jovanović, V. Mitić, and D. Kostić, “Reducing power and radical scavenging activity of four Parmeliaceae species,” Central European Journal of Biology, vol. 5, no. 6, pp. 808–813, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Leopoldini, N. Russo, and M. Toscano, “The molecular basis of working mechanism of natural polyphenolic antioxidants,” Food Chemistry, vol. 125, no. 2, pp. 288–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. E. Atawodi, J. C. Atawodi, G. A. Idakwo et al., “Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam,” Journal of Medicinal Food, vol. 13, no. 3, pp. 710–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Apak, K. Güçlü, B. Demirata et al., “Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay,” Molecules, vol. 12, no. 7, pp. 1496–1547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. I. B. Lopes, R. G. Coelho, N. C. Yoshida, and N. K. Honda, “Radical-scavenging activity of orsellinates,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 11, pp. 1551–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Turkmen, F. Sari, and Y. S. Velioglu, “Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods,” Food Chemistry, vol. 99, no. 4, pp. 835–841, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Alothman, R. Bhat, and A. A. Karim, “Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents,” Food Chemistry, vol. 115, no. 3, pp. 785–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Odabasoglu, A. Aslan, A. Cakir et al., “Antioxidant activity, reducing power and total phenolic content of some lichen species,” Fitoterapia, vol. 76, no. 2, pp. 216–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. B. R. Ranković, M. M. Kosanić, and T. P. Stanojković, “Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis,” BMC Complementary and Alternative Medicine, vol. 11, article 97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. S. T. Abdullah, H. Hamid, M. Ali, S. H. Ansari, and M. S. Alam, “Two new terpenes from the lichen Parmelia perlata,” Indian Journal of Chemistry—Section B Organic and Medicinal Chemistry, vol. 46, no. 1, pp. 173–176, 2007. View at Google Scholar · View at Scopus
  40. J. Graßmann, “Terpenoids as plant antioxidants,” Vitamins and Hormones, vol. 72, pp. 505–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Mitrović, S. Stamenković, V. Cvetković et al., “Antioxidant, antimicrobial and antiproliferative activities of five lichen species,” International Journal of Molecular Sciences, vol. 12, no. 8, pp. 5428–5448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Bézivin, S. Tomasi, F. Lohezic-Le Dévéhat, and J. Boustie, “Cytotoxic activity of some lichen extracts on murine and human cancer cell lines,” Phytomedicine, vol. 10, no. 6-7, pp. 499–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch, “The antioxidant/anticancer potential of phenolic compounds isolated from olive oil,” European Journal of Cancer, vol. 36, no. 10, pp. 1235–1247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Rajkumar, G. Guha, and R. Ashok Kumar, “Antioxidant and anti-neoplastic activities of Picrorhiza kurroa extracts,” Food and Chemical Toxicology, vol. 49, no. 2, pp. 363–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Atmani, M. B. Ruiz-Larrea, J. I. Ruiz-Sanz, L. J. Lizcano, F. Bakkali, and D. Atmani, “Antioxidant potential, cytotoxic activity and phenolic content of Clematis flammula leaf extracts,” Journal of Medicinal Plants Research, vol. 5, no. 4, pp. 589–598, 2011. View at Google Scholar · View at Scopus
  46. P. K. Divakar, A. Crespo, M. Wedin et al., “Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi,” New Phytologist, vol. 208, no. 4, pp. 1217–1226, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Elix, “Parmeliaceae,” Flora of Australia, vol. 55, pp. 1–360, 1994. View at Google Scholar
  48. P. K. Divakar and D. K. Upreti, Parmelioid Lichens in India: A Revisionary Study, Bishen Singh Mahrendra Pal Singh, Dehradun, India, 2005.
  49. M. E. Hale, “A Monograph of the Lichen Genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae),” Smithsonian Contributions to Botany, vol. 66, 55 pages, 1987. View at Publisher · View at Google Scholar
  50. F. Odabasoglu, A. Cakir, H. Suleyman et al., “Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats,” Journal of Ethnopharmacology, vol. 103, no. 1, pp. 59–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. A. de Paz, J. Raggio, M. P. Gómez-Serranillos et al., “HPLC isolation of antioxidant constituents from Xanthoparmelia spp.,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 2, pp. 165–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Z.-Q. Su, Z.-Z. Mo, J.-B. Liao et al., “Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress,” International Immunopharmacology, vol. 22, no. 2, pp. 371–378, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. F. J. Toledo Marante, A. García Castellano, F. Estévez Rosas, J. Quintana Aguiar, and J. Bermejo Barrera, “Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity,” Journal of Chemical Ecology, vol. 29, no. 9, pp. 2049–2071, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. G. D. Melo, J. P. A. dos Santos, M. R. Serafini et al., “Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite,” Toxicology in Vitro, vol. 25, no. 2, pp. 462–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Valencia-Islas, A. Zambrano, and J. L. Rojas, “Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City,” Journal of Chemical Ecology, vol. 33, no. 8, pp. 1619–1634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Manojlović, B. Ranković, M. Kosanić, P. Vasiljević, and T. Stanojković, “Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites,” Phytomedicine, vol. 19, no. 13, pp. 1166–1172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. L. F. G. Brandão, G. B. Alcantara, M. F. C. Matos et al., “Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells,” Chemical & Pharmaceutical Bulletin, vol. 61, no. 2, pp. 176–183, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Bačkorová, R. Jendželovský, M. Kello, M. Bačkor, J. Mikeš, and P. Fedoročko, “Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines,” Toxicology in Vitro, vol. 26, no. 3, pp. 462–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Brisdelli, M. Perilli, D. Sellitri et al., “Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study,” Phytotherapy Research, vol. 27, no. 3, pp. 431–437, 2013. View at Publisher · View at Google Scholar · View at Scopus