Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2016, Article ID 6273817, 10 pages
http://dx.doi.org/10.1155/2016/6273817
Research Article

The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

1Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
2Department of Food Science and Biotechnology, College of Agriculture, University of Tikrit, Tikrit, Iraq
3Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia

Received 8 June 2016; Revised 22 July 2016; Accepted 25 July 2016

Academic Editor: Yoshiji Ohta

Copyright © 2016 Nameer Khairullah Mohammed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Burits and F. Bucar, “Antioxidant activity of Nigella sativa essential oil,” Phytotherapy Research, vol. 14, no. 5, pp. 323–328, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Randhawa and M. S. Alghamdi, “Anticancer activity of Nigella sativa (Black Seed)—a review,” American Journal of Chinese Medicine, vol. 39, no. 6, pp. 1075–1091, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Piras, A. Rosa, B. Marongiu et al., “Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide,” Industrial Crops and Products, vol. 46, pp. 317–323, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. M. F. Ramadan, “Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview,” International Journal of Food Science and Technology, vol. 42, no. 10, pp. 1208–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Ramadan, L. W. Kroh, and J.-T. Mörsel, “Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions,” Journal of Agricultural and Food Chemistry, vol. 51, no. 24, pp. 6961–6969, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. K. A. Sahak, N. Kabir, G. Abbas, S. Draman, N. H. Hashim, and D. S. Hasan Adli, “The role of Nigella sativa and its active constituents in learning and memory,” Evidence-Based Complementary and Alternative Medicine, vol. 2016, Article ID 6075679, 6 pages, 2016. View at Publisher · View at Google Scholar
  7. C. C. Woo, A. P. Kumar, G. Sethi, and K. H. B. Tan, “Thymoquinone: potential cure for inflammatory disorders and cancer,” Biochemical Pharmacology, vol. 83, no. 4, pp. 443–451, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Pokorný and J. Korczak, “Preparation of natural antioxidant,” in Antioxidants in Food: Practical Applications, chapter 13, CRC Press, 2001. View at Google Scholar
  9. M. Kiralan, G. Özkan, A. Bayrak, and M. F. Ramadan, “Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods,” Industrial Crops and Products, vol. 57, pp. 52–58, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Soto, R. Chamy, and M. E. Zúñiga, “Enzymatic hydrolysis and pressing conditions effect on borage oil extraction by cold pressing,” Food Chemistry, vol. 102, no. 3, pp. 834–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Zúñiga, C. Soto, A. Mora, R. Chamy, and J. M. Lema, “Enzymic pre-treatment of Guevina avellana mol oil extraction by pressing,” Process Biochemistry, vol. 39, no. 1, pp. 51–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. H. Akanda, M. Z. I. Sarker, S. Ferdosh, M. Y. A. Manap, N. N. N. A. Rahman, and M. O. A. Kadir, “Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources,” Molecules, vol. 17, no. 2, pp. 1764–1794, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Solati, B. S. Baharin, and H. Bagheri, “Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds,” Journal of the American Oil Chemists' Society, vol. 91, no. 2, pp. 295–300, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Cheikh-Rouhou, S. Besbes, B. Hentati, C. Blecker, C. Deroanne, and H. Attia, “Nigella sativa L.: chemical composition and physicochemical characteristics of lipid fraction,” Food Chemistry, vol. 101, no. 2, pp. 673–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. B. Atta, “Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile,” Food Chemistry, vol. 83, no. 1, pp. 63–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Khoddami, H. M. Ghazali, A. Yassoralipour, Y. Ramakrishnan, and A. Ganjloo, “Physicochemical characteristics of Nigella seed (Nigella sativa L.) oil as affected by different extraction methods,” Journal of the American Oil Chemists' Society, vol. 88, no. 4, pp. 533–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. AOAC International, Official Methods of Analysis of AOAC International, AOAC International, 2005.
  18. M. Ismail, G. Al-Naqeep, and K. W. Chan, “Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats,” Free Radical Biology and Medicine, vol. 48, no. 5, pp. 664–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. O. A. Ghosheh, A. A. Houdi, and P. A. Crooks, “High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.),” Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 5, pp. 757–762, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181, no. 4617, pp. 1199–1200, 1958. View at Publisher · View at Google Scholar · View at Scopus
  21. I. F. F. Benzie and J. J. Strain, “Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration,” Methods in Enzymology, vol. 299, pp. 15–27, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “[14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” Methods in Enzymology, vol. 299, pp. 152–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Solati, B. S. Baharin, and H. Bagheri, “Supercritical carbon dioxide (SC-CO2) extraction of Nigella sativa L. oil using full factorial design,” Industrial Crops and Products, vol. 36, no. 1, pp. 519–523, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Stein, D. Mirokhin, D. Tchekhovskoi et al., The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library, Standard Reference Data Program of the National Institute of Standards and Technology, Gaithersburg, Md,USA, 2002.
  25. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, 2007.
  26. V. Y. Ixtaina, A. Vega, S. M. Nolasco et al., “Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): characterization and process optimization,” The Journal of Supercritical Fluids, vol. 55, no. 1, pp. 192–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Lutterodt, M. Luther, M. Slavin et al., “Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils,” LWT—Food Science and Technology, vol. 43, no. 9, pp. 1409–1413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Daukšas, P. R. Venskutonis, V. Povilaityte, and B. Sivik, “Rapid screening of antioxidant activity of sage (Salvia officinalis L.) extracts obtained by supercritical carbon dioxide at different extraction conditions,” Nahrung/Food, vol. 45, no. 5, pp. 338–341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Oktay, İ. Gülçin, and Ö. İ. Küfrevioğlu, “Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts,” LWT—Food Science and Technology, vol. 36, no. 2, pp. 263–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Sielicka and U. Samotyja, “Solvent influence on antioxidant activity assay of selected cold-pressed plant oils,” PhD Interdisciplinary Journal, vol. 1, pp. 67–74, 2013. View at Google Scholar
  31. A. Ghasemzadeh, H. Z. E. Jaafar, and A. Rahmat, “Antioxidant activities, total phenolics and flavonoids content in two varieties of malaysia young ginger (Zingiber officinale Roscoe),” Molecules, vol. 15, no. 6, pp. 4324–4333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Viuda-Martos, M. A. Mohamady, J. Fernández-López et al., “In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants,” Food Control, vol. 22, no. 11, pp. 1715–1722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Gloria and J. M. Aguilera, “Assessment of the quality of heated oils by differential scanning calorimetry,” Journal of Agricultural and Food Chemistry, vol. 46, no. 4, pp. 1363–1368, 1998. View at Publisher · View at Google Scholar · View at Scopus