Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017 (2017), Article ID 1591762, 11 pages
https://doi.org/10.1155/2017/1591762
Research Article

Chemical Composition and Hypotensive Effect of Campomanesia xanthocarpa

1Universidade Federal do Pampa, Uruguaiana, RS, Brazil
2Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Correspondence should be addressed to Cleci Menezes Moreira; moc.liamg@2micelc

Received 23 February 2017; Revised 12 April 2017; Accepted 26 April 2017; Published 11 May 2017

Academic Editor: Orazio Taglialatela-Scafati

Copyright © 2017 Liane Santariano Sant’Anna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Dinh, A. G. Frauman, C. I. Johnston, and M. E. Fabiani, “Angiotensin receptors: distribution, signalling and function,” Clinical Science (London), vol. 100, no. 5, pp. 481–492, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. L. P. Audoly, M. I. Oliverio, and T. M. Coffman, “Insights into the functions of type 1 (AT1) angiotensin II receptors provided by gene targeting,” Trends in Endocrinology and Metabolism, vol. 11, no. 7, pp. 263–269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. W. G. Thomas and F. A. O. Mendelsohn, “Angiotensin receptors: form and function and distribution,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 774–779, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Zaman, S. Oparil, and D. A. Calhoun, “Drugs targeting the renin-angiotensin-aldosterone system,” Nature Reviews Drug Discovery, vol. 1, no. 8, pp. 621–636, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Karnik, H. Unal, J. R. Kemp et al., “International union of basic and clinical pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimulis,” Pharmacological Reviews, vol. 67, no. 4, pp. 754–819, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Billet, F. Aguilar, C. Baudry, and E. Clauser, “Role of angiotensin II AT1 receptor activation in cardiovascular diseases,” Kidney International, vol. 74, no. 11, pp. 1379–1384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Michel, C. Foster, H. R. Brunner, and L. Liu, “A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists,” Pharmacological Reviews, vol. 65, no. 2, pp. 809–848, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Akhtar, Q. Alamgeer, H. U. Jabeen et al., “Pharmacological evaluation of antihypertensive effect of aerial parts of thymus linearis benth,” Acta Poloniae Pharmaceutica—Drug Research, vol. 71, no. 4, pp. 677–682, 2014. View at Google Scholar
  9. C. B. Alice, N. C. S. Siqueira, L. A. Mentz, G. A. A. Brasil, and K. F. D. José Silva, “Plantas medicinais de uso popular” Atlas Farmacognóstico, Ulbra, Canoas, Brazil, 1995.
  10. M. L. Dickel, S. M. K. Rates, and M. R. Ritter, “Plants popularly used for loosing weight purposes in Porto Alegre, South Brazil,” Journal of Ethnopharmacology, vol. 109, no. 1, pp. 60–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. B. F. Fernandes and V. M. F. Vargas, “Mutagenic and antimutagenic potential of the medicinal plants M. laevigata and C. xanthocarpa,” Phytotherapy Research, vol. 17, no. 3, pp. 269–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Pastori, F. C. Flores, A. A. Boligon et al., “Genotoxic effects of Campomanesia xanthocarpa extracts on Allium cepa vegetal system,” Pharmaceutical Biology, vol. 51, no. 10, pp. 1249–1255, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Z. Klafke, A. M. Da Silva, M. F. Rossato et al., “Antiplatelet, antithrombotic, and fibrinolytic activities of Campomanesia xanthocarpa,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 954748, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Z. Klafke, M. A. da Silva, T. F. Panigas et al., “Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 299–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. O. Markman, E. M. Bacchi, and E. T. M. Kato, “Antiulcerogenic effects of Campomanesia xanthocarpa,” Journal of Ethnopharmacology, vol. 94, no. 1, pp. 55–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. R. N. Viecili, D. O. Borges, K. Kirsten et al., “Effects of Campomanesia xanthocarpa on inflammatory processes, oxidative stress, endothelial dysfunction and lipid biomarkers in hypercholesterolemic individuals,” Atherosclerosis, vol. 234, no. 1, pp. 85–92, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Z. Klafke, R. L. D. Pereira, G. E. Hirsch et al., “Study of oxidative and inflammatory parameters in LDLr-KO mice treated with a hypercholesterolemic diet: Comparison between the use of Campomanesia xanthocarpa and acetylsalicylic acid,” Phytomedicine, vol. 23, no. 11, pp. 1227–1234, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sahreen, M. R. Khan, R. A. Khan, and T. B. Hadda, “Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, article 211, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Chang, M. Yang, H. Wen, and J. Chern, “Estimation of total flavonoid content in propolis by two complementary colorimetric methods,” Journal of Food and Drug Analysis, vol. 10, no. 3, pp. 178–182, 2002. View at Google Scholar
  20. X. R. Yang, C. X. Ye, J. K. Xu, and Y. M. Jiang, “Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC,” Food Chemistry, vol. 100, no. 3, pp. 1132–1136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Chaswal, S. Das, J. Prasad, A. Katyal, and M. Fahim, “Cardiac autonomic function in acutely nitric oxide deficient hypertensive rats: role of the sympathetic nervous system and oxidative stress,” Canadian Journal of Physiology and Pharmacology, vol. 24, pp. 865–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. V. C. Biancardi, C. T. Bergamaschi, O. U. Lopes, and R. R. Campos, “Sympathetic activation in rats with L-NAME-induced hypertension,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 3, pp. 401–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. P. Collister, B. J. Hornfeldt, and J. W. Osborn, “Hypotensive response to Losartan in normal rats: role of Ang II and the area postrema,” Hypertension, vol. 27, no. 3, pp. 598–606, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Zhang, H. Unal, C. Gati et al., “Structure of the angiotensin receptor revealed by serial femtosecond crystallography,” Cell, vol. 161, pp. 833–844, 2015. View at Publisher · View at Google Scholar
  25. G. M. Morris, H. Ruth, W. Lindstrom et al., “AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Yang and C. C. Chen, “GEMDOCK: a generic evolutionary method for molecular docking,” Proteins: Structure, Function and Genetics, vol. 55, no. 2, pp. 288–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. V. M. F. Kataoka and C. A. L. Cardoso, “Avaliação do perfil cromatográfico obtidos por CLAE-DAD e da atividade antioxidante das folhas de espécies Campomanesia sessiliflora O. Berg Mattos e Campomanesia xanthocarpa O. Berg,” Revista Brasileira de Plantas Medicinais, vol. 15, no. 1, pp. 121–129, 2013. View at Publisher · View at Google Scholar
  28. M. L. Silva, R. S. Costa, A. D. Santana, and M. G. B. Koblitz, “Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais,” Semina: Ciências Agrárias, vol. 31, no. 3, p. 669, 2010. View at Publisher · View at Google Scholar
  29. L. Gobbo-Neto and N. P. Lopes, “Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários,” Revista Química Nova, vol. 30, no. 2, pp. 374–381, 2007. View at Publisher · View at Google Scholar
  30. M. D. dos Santos, M. C. Almeida, N. P. Lopes, and G. E. P. de Souza, “Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid,” Biological and Pharmaceutical Bulletin, vol. 29, no. 11, pp. 2236–2240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. V. Formica and W. Regelson, “Review of the biology of quercetin and related bioflavonoids,” Food and Chemical Toxicology, vol. 33, no. 12, pp. 1061–1080, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. S. S. Patel and R. K. Goyal, “Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats,” Pharmacognosy Research, vol. 3, no. 4, pp. 239–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Zhao, J. Wang, O. Ballevre, H. Luo, and W. Zhang, “Antihypertensive effects and mechanisms of chlorogenic acids,” Hypertension Research, vol. 35, no. 4, pp. 370–374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. I. I. Mahmoud, M. S. A. Marzouk, F. A. Moharram, M. R. El-Gindi, and A. M. K. Hassan, “Acylated flavonol glycosides from eugenia jambolana leaves,” Phytochemistry, vol. 58, no. 8, pp. 1239–1244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Schmeda-Hirschmann, “Flavonoids from calycorectes, campomanesia, eugenia and hexachlamys species,” Fitoterapia, vol. 66, no. 4, pp. 373-374, 1995. View at Google Scholar · View at Scopus
  36. L. Zhang and B. L. Lokeshwar, “Medicinal properties of the Jamaican pepper plant pimenta dioica and allspice,” Current Drug Targets, vol. 13, no. 14, pp. 1900–1906, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Majewska-Wierzbicka and H. Czeczot, “Flavonoids in the prevention and treatment of cardiovascular diseases,” Polski Merkuriusz Lekarski, vol. 32, pp. 50–54, 2012. View at Google Scholar
  38. H. Czeczot and M. Podsiad, “Antioxidant status of quercetin,” Bromatologia i Chemia Toksykologiczna, vol. 38, no. 4, pp. 329–334, 2005. View at Google Scholar
  39. E. B. Behling, M. C. Sendão, H. D. C. Francescato, L. M. G. Antunes, and M. L. P. Bianchi, “Flavonóide quercetina: aspectos gerais e ações biológicas,” Alimentos e Nutrição Araraquara, vol. 15, no. 3, pp. 285–292, 2004. View at Google Scholar
  40. N. Stefanello, R. Schmatz, L. B. Pereira et al., “Effects of chlorogenic acid, caffeine and coffee on components of the purinergic system of STZ-induced diabetic rats,” The Journal of Nutritional Biochemistry, 2016. View at Google Scholar
  41. M. F. Roberts and M. Wink, Alkaloids: Biochemistry, Ecology and Medicinal Applications, Plenum Press, 1998.
  42. M. Bonati, R. Latini, B. Sadurska et al., “Kinetics and metabolism of theobromine in male rats,” Toxicology, vol. 30, no. 4, pp. 327–341, 1984. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Sawynok, “Pharmacological rationale for the clinical use of caffeine,” Drugs, vol. 49, no. 1, pp. 37–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. J. F. M. Cruz, P. B. Leite, S. E. Soares, and E. D. S. Bispo, “Bioactive compounds in different cocoa (Theobroma cacao, L) cultivars during fermentation,” Food Science and Technology, vol. 35, no. 2, pp. 279–284, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Caprioli, D. Fiorini, F. Maggi et al., “Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon,” International Journal of Food Sciences and Nutrition, vol. 67, no. 4, pp. 422–430, 2016. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Gnoatto, V. L. Bassani, G. C. Coelho, and E. P. Schenkel, “Influência do método de extração nos teores de metilxantinas em erva-mate (Ilex paraguariensis a. St.-Hil., aquifoliaceae),” Revista Química Nova, vol. 30, no. 2, pp. 304–307, 2007. View at Publisher · View at Google Scholar
  47. P. A. N. Punyasiri, B. Jeganathan, J. D. Kottawa-Arachchi et al., “New sample preparation method for quantification of phenolic compounds of tea (Camellia sinensis L. Kuntze): a polyphenol rich plant,” Journal of Analytical Methods in Chemistry, vol. 2015, Article ID 964341, 6 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Sousa, S. F. Alves, J. A. M. Paula, T. S. Fiuza, J. R. Paula, and M. T. F. Bara, “Determinação de taninos e metilxantinas no guaraná em pó (Paullinia cupana Kunth, Sapindaceae) por cromatografia líquida de alta eficiência,” Revista Brasileira de Farmacognosia, vol. 20, no. 6, pp. 866–870, 2010. View at Publisher · View at Google Scholar
  49. J. Kopincová, A. Púzserová, and I. Bernátová, “L-NAME in the cardiovascular system - nitric oxide synthase activator?” Pharmacological Reports, vol. 64, no. 3, pp. 511–520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. D. G. Kang, E. J. Sohn, Y. M. Lee et al., “Effects of bulbus Fritillaria water extract on blood pressure and renal functions in the L-NAME-induced hypertensive rats,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 51–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Saravanakumar and B. Raja, “Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats,” European Journal of Pharmacology, vol. 671, no. 1–3, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Czechowska, K. Celinski, A. Korolczuk et al., “The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats,” Journal of Physiology and Pharmacology, vol. 67, no. 4, pp. 575–586, 2016. View at Google Scholar
  53. M. W. Holladay, J. D. Michael, and K. L. John, “Neuronal nicotinic acetylcholine receptors as targets for drug discovery,” Journal of Medicinal Chemistry, vol. 40, no. 26, pp. 4169–4194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Ismail, M. Mohamed, S. A. Sulaiman, and W. A. N. Wan Ahmad, “Autonomic nervous system mediates the hypotensive effects of aqueous and residual methanolic extracts of Syzygium polyanthum (Wight) Walp. var. polyanthum leaves in anaesthetized rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 716532, 16 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Mackraj, T. Govender, and S. Ramesar, “The antihypertensive effects of quercetin in a salt-sensitive model of hypertension,” Journal of Cardiovascular Pharmacology, vol. 51, no. 3, pp. 239–245, 2008. View at Publisher · View at Google Scholar · View at Scopus