Review Article

Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications

Figure 6

Schematic representation of lectin-modified electrode surface before (a) and after binding (b) for measurements of lectin-glycan interactions. In the electrochemical system, measurements are performed in a solution containing a redox probe (e.g., [Fe(CN)6]3−/4−); reduction or oxidation states generate electrochemical signals (charge transfer resistance for electrochemical impedance spectroscopy, EIS, and current for differential pulse voltammetry, DPV) to monitor electrode surface interactions. Before binding (a), charge transfer resistance or current signals are obtained on lectin-modified electrode surface. After binding (b), the presence of cells or glycoproteins on electrode surface generates a higher blockage for charge transfer and current signals. It is measured as an increase in the charge transfer resistance (represented by semicircle A′) for EIS response and a reduction in the current amplitude for DPV response.