Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 2582463, 18 pages
https://doi.org/10.1155/2017/2582463
Review Article

Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Nankai District, Tianjin 300193, China
2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China

Correspondence should be addressed to Xin He; moc.361@ntnixeh

Received 7 November 2016; Revised 26 December 2016; Accepted 4 January 2017; Published 31 January 2017

Academic Editor: Olumayokun A. Olajide

Copyright © 2017 Gregory Ondieki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Hermann and O. Von Richter, “Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions,” Planta Medica, vol. 78, no. 13, pp. 1458–1477, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ekor, “The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety,” Frontiers in Pharmacology, vol. 4, article 177, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. G. M. Cragg and D. J. Newman, “Natural products: a continuing source of novel drug leads,” Biochimica et Biophysica Acta—General Subjects, vol. 1830, no. 6, pp. 3670–3695, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. WHO, Legal Status of Traditional Medicine and Complementar, 2001.
  5. G. Y. Yeh, R. B. Davis, and R. S. Phillips, “Use of complementary therapies in patients with cardiovascular disease,” The American Journal of Cardiology, vol. 98, no. 5, pp. 673–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B.-E. Van Wyk, H. de Wet, and F. R. Van Heerden, “An ethnobotanical survey of medicinal plants in the southeastern Karoo, South Africa,” South African Journal of Botany, vol. 74, no. 4, pp. 696–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Bent, “Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, San Francisco Medical Center,” Journal of General Internal Medicine, vol. 23, no. 6, pp. 854–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. O. Ogbera, O. Dada, F. Adeleye, and P. I. Jewo, “Complementary and alternative medicine use in diabetes mellitus,” West African Journal of Medicine, vol. 29, no. 3, pp. 158–162, 2010. View at Google Scholar · View at Scopus
  9. O. C. Amira and N. U. Okubadejo, “Frequency of complementary and alternative medicine utilization in hypertensive patients attending an urban tertiary care centre in Nigeria,” BMC Complementary and Alternative Medicine, vol. 7, article 30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. R. Ezeome and A. N. Anarado, “Use of complementary and alternative medicine by cancer patients at the University of Nigeria Teaching Hospital, Enugu, Nigeria,” BMC Complementary and Alternative Medicine, vol. 7, no. 1, article 28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Nowack, “Review Article: Cytochrome P450 enzyme, and transport protein mediated herb–drug interactions in renal transplant patients: grapefruit juice, St John's Wort—and beyond! (Review Article),” Nephrology, vol. 13, no. 4, pp. 337–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. Izzo and E. Ernst, “Interactions between herbal medicines and prescribed drugs,” Drugs, vol. 69, no. 13, pp. 1777–1798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. J. Gurley, E. K. Fifer, and Z. Gardner, “Pharmacokinetic herb-drug interactions (part 2): drug interactions involving popular botanical dietary supplements and their clinical relevance,” Planta Medica, vol. 78, no. 13, pp. 1490–1514, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Brantley, T. N. Graf, N. H. Oberlies, and M. F. Paine, “A systematic approach to evaluate herb-drug interaction mechanisms: investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors,” Drug Metabolism and Disposition, vol. 41, no. 9, pp. 1662–1670, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. S.-B. Kim, I.-S. Yoon, K.-S. Kim et al., “In vitro and in vivo evaluation of the effect of puerarin on hepatic cytochrome P450-mediated drug metabolism,” Planta Medica, vol. 80, no. 7, pp. 561–567, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Meijerman, J. H. Beijnen, and J. H. M. Schellens, “Herb-drug interactions in oncology: focus on mechanisms of induction,” The Oncologist, vol. 11, no. 7, pp. 742–752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Gardiner, R. E. Graham, A. T. R. Legedza, D. M. Eisenberg, and R. S. Phillips, “Factors associated with dietary supplement use among prescription medication users,” Archives of Internal Medicine, vol. 166, no. 18, pp. 1968–1974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Kennedy, C.-C. Wang, and C.-H. Wu, “Patient disclosure about herb and supplement use among adults in the US,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 451–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Tarirai, A. M. Viljoen, and J. H. Hamman, “Herb-drug pharmacokinetic interactions reviewed,” Expert Opinion on Drug Metabolism & Toxicology, vol. 6, no. 12, pp. 1515–1538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Brown, O. Heyneke, D. Brown, J. P. H. van Wyk, and J. H. Hamman, “Impact of traditional medicinal plant extracts on antiretroviral drug absorption,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 588–592, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Tunstall-Pedoe, “Preventing chronic diseases. A vital investment: WHO global report. Geneva: World Health Organization, 2005. pp 200. CHF 30.00. ISBN 92 4 1563001,” International Journal of Epidemiology, vol. 35, no. 4, p. 1107, 2006. View at Publisher · View at Google Scholar
  22. G. Danaei, S. V. Hoorn, A. D. Lopez, C. J. L. Murray, and M. Ezzati, “Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors,” The Lancet, vol. 366, no. 9499, pp. 1784–1793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. H. Roukos, “Genome-wide association studies: how predictable is a person's cancer risk?” Expert Review of Anticancer Therapy, vol. 9, no. 4, pp. 389–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. Oliver, “United States, Africa, Caribbean collaboration: strengths and opportunities for global cancer research,” in Proceedings of the Sigma Theta Tau International's 27th International Nursing Research Congress (STTI '16), Utrecht, The Netherlands, 2016.
  25. M. A. Weber, E. L. Schiffrin, W. B. White et al., “Clinical practice guidelines for the management of hypertension in the community,” The Journal of Clinical Hypertension, vol. 16, no. 1, pp. 14–26, 2014. View at Google Scholar
  26. D. Bradshaw, P. Groenewald, R. Laubscher et al., “Initial burden of disease estimates for South Africa, 2000,” South African Medical Journal, vol. 93, no. 9, pp. 682–688, 2003. View at Google Scholar · View at Scopus
  27. A. P. Kengne and B. M. Mayosi, “Readiness of the primary care system for non-communicable diseases in sub-Saharan Africa,” The Lancet Global Health, vol. 2, no. 5, pp. e247–e248, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Murray, T. Vos, and R. Lozano, “Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 859, pp. 2197–2223, 2010. View at Google Scholar
  29. J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Research and Clinical Practice, vol. 87, no. 1, pp. 4–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. M. M. Lawes, S. Vander Hoorn, M. R. Law, P. Elliott, S. MacMahon, and A. Rodgers, “Blood pressure and the global burden of disease 2000. Part 1: estimates of blood pressure levels,” Journal of Hypertension, vol. 24, no. 3, pp. 413–422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. WHO Regional Office for Africa, The Health of the People: The African Regional Health Report, World Health Organization, 2006.
  32. B. M. Mayosi, “The 10 'Best Buys' to combat heart disease, diabetes and stroke in Africa,” Heart, vol. 99, no. 14, pp. 973–974, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Bray, J.-S. Ren, E. Masuyer, and J. Ferlay, “Global estimates of cancer prevalence for 27 sites in the adult population in 2008,” International Journal of Cancer, vol. 132, no. 5, pp. 1133–1145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, “Global cancer statistics, 2012,” CA Cancer Journal for Clinicians, vol. 65, no. 2, pp. 87–108, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. K. S. Ogle, G. M. Swanson, N. Woods, and F. Azzouz, “Cancer and comorbidity: redefining chronic diseases,” Cancer, vol. 88, no. 3, pp. 653–663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Gerber, R. Botes, A. Mostert, A. Vorster, and E. Buskens, “A cohort study of elderly people in Bloemfontein, South Africa, to determine health-related quality of life and functional abilities,” South African Medical Journal, vol. 106, no. 3, pp. 298–301, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Folb, V. Timmerman, N. S. Levitt et al., “Multimorbidity, control and treatment of noncommunicable diseases among primary healthcare attenders in the Western Cape, South Africa,” South African Medical Journal, vol. 105, no. 8, pp. 642–647, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Zhou, Y. Gao, W. Jiang, M. Huang, A. Xu, and J. W. Paxton, “Interactions of herbs with cytochrome P450,” Drug Metabolism Reviews, vol. 35, no. 1, pp. 35–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. E. Amacher, “The effects of cytochrome P450 induction by xenobiotics on endobiotic metabolism in pre-clinical safety studies,” Toxicology Mechanisms and Methods, vol. 20, no. 4, pp. 159–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Rendic and F. J. Di Carlo, “Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors,” Drug Metabolism Reviews, vol. 29, no. 1-2, pp. 413–580, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. J.-J. Wu, C.-Z. Ai, Y. Liu et al., “Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes,” Current Drug Metabolism, vol. 13, no. 5, pp. 599–614, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Zhang, D. Cui, B. Wang et al., “Pharmacokinetic drug interactions involving 17α-ethinylestradiol: a new look at an old drug,” Clinical Pharmacokinetics, vol. 46, no. 2, pp. 133–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Pelkonen, M. Turpeinen, J. Hakkola, P. Honkakoski, J. Hukkanen, and H. Raunio, “Inhibition and induction of human cytochrome P450 enzymes: current status,” Archives of Toxicology, vol. 82, no. 10, pp. 667–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. P. B. Watkins, S. A. Wrighton, E. G. Schuetz, D. T. Molowa, and P. S. Guzelian, “Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man,” The Journal of Clinical Investigation, vol. 80, no. 4, pp. 1029–1036, 1987. View at Publisher · View at Google Scholar · View at Scopus
  45. A. H. Schinkel and J. W. Jonker, “Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview,” Advanced Drug Delivery Reviews, vol. 55, no. 1, pp. 3–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Romsicki and F. J. Sharom, “The ATPase and ATP-binding functions of P-glycoprotein,” European Journal of Biochemistry, vol. 256, no. 1, pp. 170–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. M. M. R. De Maat, G. Corine Ekhart, A. D. R. Huitema, C. H. W. Koks, J. W. Mulder, and J. H. Beijnen, “Drug interactions between antiretroviral drugs and comedicated agents,” Clinical Pharmacokinetics, vol. 42, no. 3, pp. 223–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S.-F. Zhou, “Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition,” Xenobiotica, vol. 38, no. 7-8, pp. 802–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Takano, R. Yumoto, and T. Murakami, “Expression and function of efflux drug transporters in the intestine,” Pharmacology and Therapeutics, vol. 109, no. 1-2, pp. 137–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Katragadda, B. Budda, B. S. Anand, and A. K. Mitra, “Role of efflux pumps and metabolising enzymes in drug delivery,” Expert Opinion on Drug Delivery, vol. 2, no. 4, pp. 683–705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. S. B. Syed and M. S. Coumar, “P-glycoprotein mediated multidrug resistance reversal by phytochemicals: a review of SAR & future perspective for drug design,” Current Topics in Medicinal Chemistry, vol. 16, no. 22, pp. 2484–2508, 2016. View at Google Scholar · View at Scopus
  52. S. Zhou, L. Y. Lim, and B. Chowbay, “Herbal modulation of P‐glycoprotein,” Drug Metabolism Reviews, vol. 36, no. 1, pp. 57–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Hunter and B. H. Hirst, “Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption,” Advanced Drug Delivery Reviews, vol. 25, no. 2-3, pp. 129–157, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Marchetti, R. Mazzanti, J. H. Beijnen, and J. H. M. Schellens, “Concise review: clinical relevance of drug–drug and herb–drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein),” Oncologist, vol. 12, no. 8, pp. 927–941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Gupta, “P-glycoprotein expression and regulation: age-related changes and potential effects on drug therapy,” Drugs & Aging, vol. 7, no. 1, pp. 19–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Gollapudi, M. Reddy, P. Gangadharam, T. Tsuruo, and S. Gupta, “Mycobacterium tuberculosis induces expression of P-glycoprotein in promonocytic U1 cells chronically infected with HIV type 1,” Biochemical and Biophysical Research Communications, vol. 199, no. 3, pp. 1181–1187, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Ahmadu, A. Abdulkarim, R. Grougnet et al., “Two new peltogynoids from Acacia nilotica Delile with kinase inhibitory activity,” Planta Medica, vol. 76, no. 5, pp. 458–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Singh, B. Singh, S. Singh, N. Kumar, S. Kumar, and S. Arora, “Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del.,” Toxicology in Vitro, vol. 22, no. 8, pp. 1965–1970, 2008. View at Publisher · View at Google Scholar
  59. S. Deferme, A. Kamuhabwa, C. Nshimo, P. De Wittez, and P. Augustijns, “Screening of Tanzanian plant extracts for their potential inhibitory effect on P-glycoprotein mediated efflux,” Phytotherapy Research, vol. 17, no. 5, pp. 459–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Agbonon, K. Eklu-Gadegbeku, K. Aklikokou et al., “In vitro inhibitory effect of West African medicinal and food plants on human cytochrome P450 3A subfamily,” Journal of Ethnopharmacology, vol. 128, no. 2, pp. 390–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. E. O. Ajaiyeoba and O. Ekundayo, “Essential oil constituents of Aframomum melegueta (Roscoe) K. Schum. seeds (alligator pepper) from Nigeria,” Flavour and Fragrance Journal, vol. 14, no. 2, pp. 109–111, 1999. View at Google Scholar · View at Scopus
  62. R. M. P. Gutierrez, E. G. Baez, M. del Socorro López Cortez, and S. A. Cárdenas, “Extracts of bixa inhibit glycation and AGEs formation in vitro,” Journal of Medicinal Plants Research, vol. 5, no. 6, pp. 942–948, 2011. View at Google Scholar · View at Scopus
  63. C. Jewell and N. M. O'Brien, “Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat,” British Journal of Nutrition, vol. 81, no. 3, pp. 235–242, 1999. View at Google Scholar · View at Scopus
  64. T. Nabekura, S. Kamiyama, and S. Kitagawa, “Effects of dietary chemopreventive phytochemicals on P-glycoprotein function,” Biochemical and Biophysical Research Communications, vol. 327, no. 3, pp. 866–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. F. Oga, S. Sekine, Y. Shitara, and T. Horie, “P-glycoprotein mediated efflux in Caco-2 cell monolayers: the influence of herbals on digoxin transport,” Journal of Ethnopharmacology, vol. 144, no. 3, pp. 612–617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Rodrigues, G. Alves, J. Francisco, A. Fortuna, and A. Falcão, “Herb-drug pharmacokinetic interaction between carica papaya extract and amiodarone in rats,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 17, no. 3, pp. 302–315, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Tona, K. Kambu, N. Ngimbi, K. Cimanga, and A. J. Vlietinck, “Antiamoebic and phytochemical screening of some Congolese medicinal plants,” Journal of Ethnopharmacology, vol. 61, no. 1, pp. 57–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. N. M. Piero, M. N. Joan, K. M. Cromwell et al., “Hypoglycemic activity of some kenyan plants traditionally used to manage diabetes mellitus in eastern province,” Journal of Diabetes & Metabolism, vol. 2, article 8, 2011. View at Publisher · View at Google Scholar
  69. W. Bedada, F. De Andrés, E. Engidawork et al., “The psychostimulant khat (Catha edulis) inhibits CYP2D6 enzyme activity in humans,” Journal of Clinical Psychopharmacology, vol. 35, no. 6, pp. 694–699, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Savai, A. Varghese, N. Pandita, and M. Chintamaneni, “Investigation of CYP3A4 and CYP2D6 interactions of Withania somnifera and centella asiatica in human liver microsomes,” Phytotherapy Research, vol. 29, no. 5, pp. 785–790, 2015. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Pan, B. A. Abd-Rashid, Z. Ismail et al., “In vitro modulatory effects on three major human cytochrome P450 enzymes by multiple active constituents and extracts of Centella asiatica,” Journal of Ethnopharmacology, vol. 130, no. 2, pp. 275–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. N. M. M. Shalaby, H. I. Abd-Alla, H. H. Ahmed, and N. Basoudan, “Protective effect of Citrus sinensis and Citrus aurantifolia against osteoporosis and their phytochemical constituents,” Journal of Medicinal Plants Research, vol. 5, no. 4, pp. 579–588, 2011. View at Google Scholar · View at Scopus
  73. J. Cao, L. Zheng, L. Ji, D. Lu, Y. Peng, and J. Zheng, “Mechanism-based inactivation of cytochrome P450 2B6 by isoimperatorin,” Chemico-Biological Interactions, vol. 226, pp. 23–29, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Malhotra, D. G. Bailey, M. F. Paine, and P. B. Watkins, “Seville orange juice-felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins,” Clinical Pharmacology & Therapeutics, vol. 69, no. 1, pp. 14–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Takanaga, A. Ohnishi, S. Yamada et al., “Polymethoxylated flavones in orange juice are inhibitors of P-glycoprotein but not cytochrome P450 3A4,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 1, pp. 230–236, 2000. View at Google Scholar · View at Scopus
  76. T. Nabekura, T. Yamaki, and S. Kitagawa, “Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1,” European Journal of Pharmacology, vol. 600, no. 1–3, pp. 45–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Azuma, M. Nakayama, M. Koshioka et al., “Phenolic antioxidants from the leaves of Corchorus olitorius L.,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 3963–3966, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Nwozo, O. Adaramoye, and E. Ajaiyeoba, “Oral administration of extract from Curcuma longa lowers blood glucose and attenuates alloxan-induced hyperlipidemia in diabetic rabbits,” Pakistan Journal of Nutrition, vol. 8, no. 5, pp. 625–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Neerati, R. Karan, and J. R. Kanwar, “Influence of curcumin on pioglitazone metabolism and Pk/Pd: diabetes mellitus,” Journal of Diabetes & Metabolism, vol. 1, no. S6, 2013. View at Publisher · View at Google Scholar
  80. R. Appiah-Opong, J. N. M. Commandeur, B. van Vugt-Lussenburg, and N. P. E. Vermeulen, “Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products,” Toxicology, vol. 235, no. 1-2, pp. 83–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Chen, W.-H. Liu, B.-L. Chen et al., “Plant polyphenol curcumin significantly affects CYPIA2 and CYP2A6 activity in healthy, male Chinese volunteers,” Annals of Pharmacotherapy, vol. 44, no. 6, pp. 1038–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Ampasavate, U. Sotanaphun, P. Phattanawasin, and N. Piyapolrungroj, “Effects of Curcuma spp. on P-glycoprotein function,” Phytomedicine, vol. 17, no. 7, pp. 506–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. H. A. Abdelgadir and J. Van Staden, “Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review,” South African Journal of Botany, vol. 88, pp. 204–218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. J. M. Dalziel, The useful plants of west tropical Africa, The useful plants of West Tropical Africa, 1937.
  85. A. C. Adebajo and J. Reisch, “Minor furocoumarins of Murraya koenigii,” Fitoterapia, vol. 71, no. 3, pp. 334–337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. A. C. Adebajo, G. Olayiwola, J. E. Verspohl et al., “Evaluation of the ethnomedical claims of Murraya koenigii,” Pharmaceutical Biology, vol. 42, no. 8, pp. 610–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Pandit, P. K. Mukherjee, K. Mukherjee et al., “Cytochrome P450 inhibitory potential of selected Indian spices—possible food drug interaction,” Food Research International, vol. 45, no. 1, pp. 69–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. A. O. Ogunbinu, I. A. Ogunwande, G. Flamini, and P. L. Cioni, “Volatile compounds of Persea americana Mill from Nigeria,” Journal of Essential Oil-Bearing Plants, vol. 10, no. 2, pp. 133–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Nabekura, T. Yamaki, K. Ueno, and S. Kitagawa, “Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals,” Cancer Chemotherapy and Pharmacology, vol. 62, no. 5, pp. 867–873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. O. O. Babalola, J. I. Anetor, and F. A. Adeniyi, “Amelioration of carbon tetrachloride-induced hepatotoxicity by terpenoid extract from leaves of Vernonia amydgalina,” African Journal of Medicine and Medical Sciences, vol. 30, no. 1-2, pp. 91–93, 2001. View at Google Scholar · View at Scopus
  91. S. Skalli, A. Zaid, and R. Soulaymani, “Drug interactions with herbal medicines,” Therapeutic Drug Monitoring, vol. 29, no. 6, pp. 679–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Cordier and V. Steenkamp, “Drug interactions in African herbal remedies,” Drug Metabolism and Drug Interactions, vol. 26, no. 2, pp. 53–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Zimmet, K. G. M. M. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. WHO, World Health Organization Fact Sheet Number 312, World Health Organization, Geneva, Switzerland, 2006.
  95. L. L. Brunton, B. Chabner, and B. C. Knollmann, Goodman & Gilman's the Pharmacological Basis of Therapeutics, vol. 12, McGraw-Hill Medical, New York, NY, USA, 2011.
  96. G. C. Mannino and G. Sesti, “Individualized therapy for type 2 diabetes,” Molecular Diagnosis & Therapy, vol. 16, no. 5, pp. 285–302, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Al-Habori and A. Raman, “Antidiabetic and hypocholesterolaemic effects of fenugreek,” Phytotherapy Research, vol. 12, no. 4, pp. 233–242, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Y. Yeh, D. M. Eisenberg, T. J. Kaptchuk, and R. S. Phillips, “Systematic review of herbs and dietary supplements for glycemic control in diabetes,” Diabetes Care, vol. 26, no. 4, pp. 1277–1294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Shang, S. Cai, and X. Wang, “Analysis of amino acids in Trigonella foenumgraecum seeds,” Journal of Chinese medicinal materials, vol. 21, no. 4, pp. 188–190, 1998. View at Google Scholar · View at Scopus
  100. B. Bin-Hafeez, R. Haque, S. Parvez, S. Pandey, I. Sayeed, and S. Raisuddin, “Immunomodulatory effects of fenugreek (Trigonella foenum graecum L.) extract in mice,” International Immunopharmacology, vol. 3, no. 2, pp. 257–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Zia, S. N. Hasnain, and S. K. Hasan, “Evaluation of the oral hypoglycaemic effect of Trigonella foenum-graecum L. (methi) in normal mice,” Journal of Ethnopharmacology, vol. 75, no. 2-3, pp. 191–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Al-Jenoobi, H. M. Korashy, A. Ahad et al., “Potential inhibitory effect of herbal medicines on rat hepatic cytochrome P450 2D gene expression and metabolic activity,” Die Pharmazie, vol. 69, no. 11, pp. 799–803, 2014. View at Google Scholar
  103. F. I. Al-Jenoobi, A. A. Al-Thukair, M. A. Alam et al., “Effect of Trigonella foenum-graecum L. on Metabolic Activity of CYP2D6 and CYP3A4,” Forschende Komplementarmedizin, vol. 22, no. 3, pp. 180–184, 2015. View at Publisher · View at Google Scholar · View at Scopus
  104. H. M. Korashy, F. I. Al-Jenoobi, M. Raish et al., “Impact of herbal medicines like nigella sativa, trigonella foenum-graecum, and ferula asafoetida, on cytochrome P450 2C11 gene expression in rat liver,” Drug Research, vol. 65, no. 7, pp. 366–372, 2014. View at Publisher · View at Google Scholar · View at Scopus
  105. M. F. Al-Ajmi, “The effect of fenugreek on the bioavailability of glibenclamide in normal beagle dogs,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 6, pp. 671–677, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. V. K. Manda, B. Avula, Z. Ali et al., “Characterization of in vitro ADME properties of diosgenin and dioscin from Dioscorea villosa,” Planta Medica, vol. 79, no. 15, pp. 1421–1428, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. E. Adjanohoun, “Traditional medicine and pharmacopoeia: contribution to ethnobotanical and floristic studies in Cameroon,” Tech. Rep., Scientific, Technical, and Research Commission of the Organization of African Unity, Lagos, Nigeria, 1996. View at Google Scholar
  108. R. Kamgang, R. Youmbi Mboumi, A. Foyet Fondjo, M. A. Fokam Tagne, G. P. R. Mengue N'dillé, and J. Ngogang Yonkeu, “Antihyperglycaemic potential of the water-ethanol extract of Kalanchoe crenata (Crassulaceae),” Journal of Natural Medicines, vol. 62, no. 1, pp. 34–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Awortwe, V. K. Manda, C. Avonto et al., “In vitro evaluation of reversible and time-dependent inhibitory effects of kalanchoe crenata on CYP2C19 and CYP3A4 activities,” Drug Metabolism Letters, vol. 9, no. 1, pp. 48–62, 2015. View at Publisher · View at Google Scholar · View at Scopus
  110. M. A. Khan, “Chemical composition and medicinal properties of Nigella sativa Linn.,” Inflammopharmacology, vol. 7, no. 1, pp. 15–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  111. A.-U. H. Gilani, Q. Jabeen, and M. A. U. Khan, “A review of medicinal uses and pharmacological activities of Nigella sativa,” Pakistan Journal of Biological Sciences, vol. 7, no. 4, pp. 441–451, 2004. View at Publisher · View at Google Scholar
  112. A. Al-Hader, M. Aqel, and Z. Hasan, “Hypoglycemic effects of the volatile oil of Nigella sativa seeds,” International Journal of Pharmacognosy, vol. 31, no. 2, pp. 96–100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Meddah, R. Ducroc, M. El Abbes Faouzi et al., “Nigella sativa inhibits intestinal glucose absorption and improves glucose tolerance in rats,” Journal of Ethnopharmacology, vol. 121, no. 3, pp. 419–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. F. I. Al-Jenoobi, A. A. Al-Thukair, F. A. Abbas et al., “Effect of black seed on dextromethorphan O- and N-demethylation in human liver microsomes and healthy human subjects,” Drug Metabolism Letters, vol. 4, no. 1, pp. 51–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. F. I. Al-Jenoobi, S. A. Al-Suwayeh, I. Muzaffar et al., “Effects of Nigella sativa and Lepidium sativum on cyclosporine pharmacokinetics,” BioMed Research International, vol. 2013, Article ID 953520, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. U. K. Mazunder, M. Gupta, and Y. Rajeshwar, “Antihyperglycemic effect and antioxidant potential of Phyllanthus niruri (Euphorbiaceae) in streptozotocin induced diabetic rats,” European Bulletin of Drug Research, vol. 13, no. 1, pp. 15–23, 2005. View at Google Scholar
  117. L. Taylor, Herbal Secret of Rainforest, Sagca Press, 2nd edition, 2003.
  118. G. Bagalkotkar, S. R. Sagineedu, M. S. Saad, and J. Stanslas, “Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review,” Journal of Pharmacy and Pharmacology, vol. 58, no. 12, pp. 1559–1570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Appiah-Opong, J. N. M. Commandeur, C. Axson, and N. P. E. Vermeulen, “Interactions between cytochromes P450, glutathione S-transferases and Ghanaian medicinal plants,” Food and Chemical Toxicology, vol. 46, no. 12, pp. 3598–3603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Taesotikul, W. Dumrongsakulchai, N. Wattanachai et al., “Inhibitory effects of phyllanthus amarus and its major lignans on human microsomal cytochrome P450 activities: evidence for CYP3A4 mechanism-based inhibition,” Drug Metabolism and Pharmacokinetics, vol. 26, no. 2, pp. 154–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Wongnawa, P. Kaewmeesri, S. Sriwiriyajan, W. Mahatthanatrakul, and W. Ridtitid, “Effect of Phyllanthus amarus extract on the pharmacokinetics of midazolam in rabbits,” Songklanakarin Journal of Science & Technology, vol. 36, no. 5, pp. 547–553, 2014. View at Google Scholar · View at Scopus
  122. T. Taesotikul, M. Nakajima, W. Tassaneeyakul, and T. Yokoi, “Effects of Phyllanthus amarus on the pharmacokinetics of midazolam and cytochrome P450 activities in rats,” Xenobiotica, vol. 42, no. 7, pp. 641–648, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Eddouks, M. Maghrani, A. Lemhadri, M.-L. Ouahidi, and H. Jouad, “Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet),” Journal of Ethnopharmacology, vol. 82, no. 2-3, pp. 97–103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Zia-Ul-Haq, S. Ahmad, L. Calani et al., “Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds,” Molecules, vol. 17, no. 9, pp. 10306–10321, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Eddouks and M. Maghrani, “Effect of Lepidium sativum L. on renal glucose reabsorption and urinary TGF-β1 levels in diabetic rats,” Phytotherapy Research, vol. 22, no. 1, pp. 1–5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. F. I. Al-Jenoobi, A. A. Al-Thukair, M. A. Alam et al., “Effect of garden cress seeds powder and its alcoholic extract on the metabolic activity of CYP2D6 and CYP3A4,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 634592, 6 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  127. B. Higgins and B. Williams, “Pharmacological management of hypertension,” Clinical Medicine, vol. 7, no. 6, pp. 612–616, 2007. View at Google Scholar · View at Scopus
  128. L. J. Beilin, “Non-pharmacological management of hypertension: optimal strategies for reducing cardiovascular risk,” Journal of Hypertension, vol. 12, no. 10, pp. S71–S81, 1994. View at Google Scholar · View at Scopus
  129. GRIN, Artemisia herba-alba Asso Taxonomy for Plants, Grin Global, 2010.
  130. R. Segal, I. Feuerstein, and A. Danin, “Chemotypes of Artemisia herba-alba in Israel based on their sesquiterpene lactone and essential oil constitution,” Biochemical Systematics and Ecology, vol. 15, no. 4, pp. 411–416, 1987. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Tahraoui, J. El-Hilaly, Z. H. Israili, and B. Lyoussi, “Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province),” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 105–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. N.-A. Zeggwagh, O. Farid, J. B. Michel, and M. Eddouks, “Cardiovascular effect of Artemisia herba alba aqueous extract in spontaneously hypertensive rats,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 30, no. 5, pp. 375–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. A. E.-H. H. Mohamed, M. A. El-Sayed, M. E. Hegazy, S. E. Helaly, A. M. Esmail, and N. S. Mohamed, “Chemical constituents and biological activities of Artemisia herba-alba,” Records of Natural Products, vol. 4, no. 1, pp. 1–25, 2010. View at Google Scholar · View at Scopus
  134. A.-H. Mohamed, A. M. Esmail, and A. M. El-Saade, “Terpenes from Artemisia herba-alba,” Zeitschrift für Naturforschung C, vol. 68, no. 9-10, pp. 343–346, 2013. View at Google Scholar · View at Scopus
  135. M. Laid, M.-E. F. Hegazy, A. A. Ahmed, K. Ali, D. Belkacemi, and S. Ohta, “Sesquiterpene lactones from Algerian Artemisia herba-alba,” Phytochemistry Letters, vol. 1, no. 2, pp. 85–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. A. Moufid and M. Eddouks, “Artemisia herba alba: a popular plant with potential medicinal properties,” Pakistan Journal of Biological Sciences, vol. 15, no. 24, pp. 1152–1159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Zouari, N. Zouari, N. Fakhfakh, A. Bougatef, M. A. Ayadi, and M. Neffati, “Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herba alba Asso,” Journal of Medicinal Plants Research, vol. 4, no. 10, pp. 871–880, 2010. View at Google Scholar · View at Scopus
  138. C. Ulbricht, W. Chao, D. Costa, E. Rusie-Seamon, W. Weissner, and J. Woods, “Clinical evidence of herb-drug interactions: a systematic review by the natural standard research collaboration,” Current Drug Metabolism, vol. 9, no. 10, pp. 1063–1120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. D. Khlifi, R. M. Sghaier, S. Amouri, D. Laouini, M. Hamdi, and J. Bouajila, “Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L.,” Food and Chemical Toxicology, vol. 55, pp. 202–208, 2013. View at Publisher · View at Google Scholar · View at Scopus
  140. O. Pelkonen, K. Abass, and J. Wiesner, “Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment,” Regulatory Toxicology and Pharmacology, vol. 65, no. 1, pp. 100–107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  141. H. A. Wahabi, L. A. Alansary, A. H. Al-Sabban, and P. Glasziuo, “The effectiveness of Hibiscus sabdariffa in the treatment of hypertension: a systematic review,” Phytomedicine, vol. 17, no. 2, pp. 83–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. H. Faraji and A. H. H. Tarkhani, “The effect of sour tea (Hibiscus sabdariffa) on essential hypertension,” Journal of Ethnopharmacology, vol. 65, no. 3, pp. 231–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Herrera-Arellano, S. Flores-Romero, M. A. Chávez-Soto, and J. Tortoriello, “Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial,” Phytomedicine, vol. 11, no. 5, pp. 375–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. O. O. Ndu, C. S. Nworu, C. O. Ehiemere, N. C. Ndukwe, and I. S. Ochiogu, “Herb-drug interaction between the extract of Hibiscus sabdariffa L. and hydrochlorothiazide in experimental animals,” Journal of Medicinal Food, vol. 14, no. 6, pp. 640–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. S. S. Johnson, F. T. Oyelola, T. Ari, and H. Juho, “In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms,” African journal of traditional, complementary, and alternative medicines, vol. 10, no. 3, pp. 533–540, 2013. View at Google Scholar · View at Scopus
  146. P. Prommetta, L. Phivthong-Ngam, C. Chaichantipyuth, N. Niwattisaiwong, and S. Lawanprasert, “Aqueous extract of the calyces of Hibiscus subdariffa Linn.: effects on hepatic cytochrome P450 and subacute toxicity in rats,” Thai Journal of Pharmaceutical Sciences, vol. 30, pp. 8–18, 2006. View at Google Scholar
  147. H. M. Abdallah, A. M. Al-Abd, R. S. El-Dine, and A. M. El-Halawany, “P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review,” Journal of Advanced Research, vol. 6, no. 1, pp. 45–62, 2015. View at Publisher · View at Google Scholar · View at Scopus
  148. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP–dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Bradley and V. Ling, “P-glycoprotein, multidrug resistance and tumor progression,” Cancer and Metastasis Reviews, vol. 13, no. 2, pp. 223–233, 1994. View at Publisher · View at Google Scholar · View at Scopus
  150. H. Thomas and H. M. Coley, “Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein,” Cancer Control, vol. 10, no. 2, pp. 159–165, 2003. View at Google Scholar · View at Scopus
  151. R. J. Kelly, D. Draper, C. C. Chen et al., “A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer,” Clinical Cancer Research, vol. 17, no. 3, pp. 569–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. R. J. Kelly, R. W. Robey, C. C. Chen et al., “A pharmacodynamic study of the P-glycoprotein antagonist CBT-1® in combination with paclitaxel in solid tumors,” The Oncologist, vol. 17, no. 4, p. 512, 2012. View at Publisher · View at Google Scholar · View at Scopus
  153. G. M. Cragg and D. J. Newman, “Plants as a source of anti-cancer agents,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 72–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. J.-E. Kim, H.-J. Cho, J. S. Kim et al., “The limited intestinal absorption via paracellular pathway is responsible for the low oral bioavailability of doxorubicin,” Xenobiotica, vol. 43, no. 7, pp. 579–591, 2013. View at Publisher · View at Google Scholar · View at Scopus
  155. M. A. Bisi-Johnson, C. L. Obi, T. Hattori et al., “Evaluation of the antibacterial and anticancer activities of some South African medicinal plants,” BMC Complementary and Alternative Medicine, vol. 11, no. 1, article 14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. M. E. M. Saeed, M. Meyer, A. Hussein, and T. Efferth, “Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells,” Journal of Ethnopharmacology, vol. 186, pp. 209–223, 2016. View at Publisher · View at Google Scholar · View at Scopus
  157. V. Steenkamp and M. C. Gouws, “Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer,” South African Journal of Botany, vol. 72, no. 4, pp. 630–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. W. S. El-Deiry, “Role of oncogenes in resistance and killing by cancer therapeutic agents,” Current Opinion in Oncology, vol. 9, no. 1, pp. 79–87, 1997. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Shetzer, H. Solomon, G. Koifman, A. Molchadsky, S. Horesh, and V. Rotter, “The paradigm of mutant p53-expressing cancer stem cells and drug resistance,” Carcinogenesis, vol. 35, no. 6, pp. 1196–1208, 2014. View at Publisher · View at Google Scholar · View at Scopus
  160. M. C. Da Silva, S. Izidine, and A. B. Amude, A Preliminary Checklist of the Vascular Plants of Mozambique, Sabonet, 2004.
  161. B.-E. Van Wyk, F. van Heerden, and B. van Oudtshoorn, Poisonous Plants of South Africa, Briza Publications, Pretoria, South Africa, 2002.
  162. G. Fouche, G. M. Cragg, P. Pillay, N. Kolesnikova, V. J. Maharaj, and J. Senabe, “In vitro anticancer screening of South African plants,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 455–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. C. Riganti, I. Campia, J. Kopecka et al., “Pleiotropic effects of cardioactive glycosides,” Current Medicinal Chemistry, vol. 18, no. 6, pp. 872–885, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Zeino, M. S. Paulsen, M. Zehl, E. Urban, B. Kopp, and T. Efferth, “Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids,” Biochemical Pharmacology, vol. 93, no. 1, pp. 11–24, 2015. View at Publisher · View at Google Scholar · View at Scopus
  165. F. Brouillard, D. Tondelier, A. Edelman, and M. Baudouin-Legros, “Drug resistance induced by ouabain via the stimulation of MDR1 gene expression in human carcinomatous pulmonary cells,” Cancer Research, vol. 61, no. 4, pp. 1693–1698, 2001. View at Google Scholar · View at Scopus
  166. M. S. Abubakar, A. M. Musa, A. Ahmed, and I. M. Hussaini, “The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and Fulani tribes of Northern Nigeria,” Journal of Ethnopharmacology, vol. 111, no. 3, pp. 625–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. E. Ajaiyeoba, M. Falade, O. Ogbole, L. Okpako, and D. Akinboye, Short Communication-In Vivo Antimalarial and Cytotoxic Properties of Annona Senegalensis Extract, African Ethnomedicines Network, 2006.
  168. M. You, D. B. M. Wickramaratne, G. L. Silva et al., “(-)-Roemerine, an aporphine alkaloid from Annona senegalensis that reverses the multidrug-resistance phenotype with cultured cells,” Journal of Natural Products, vol. 58, no. 4, pp. 598–604, 1995. View at Publisher · View at Google Scholar · View at Scopus
  169. N. Duarte, A. Járdánházy, J. Molnár, A. Hilgeroth, and M.-J. U. Ferreira, “Synergistic interaction between p-glycoprotein modulators and epirubicine on resistant cancer cells,” Bioorganic & Medicinal Chemistry, vol. 16, no. 20, pp. 9323–9330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. A. A. Adeneye, O. Awodele, S. A. Aiyeola, and A. S. Benebo, “Modulatory potentials of the aqueous stem bark extract of Mangifera indica on carbon tetrachloride-induced hepatotoxicity in rats,” Journal of Traditional and Complementary Medicine, vol. 5, no. 2, pp. 106–115, 2015. View at Publisher · View at Google Scholar · View at Scopus
  171. J. Ojewole, “Antiinflammatory, analgesic and hypoglycemic effects of Mangifera indica Linn. (Anacardiaceae) stem-bark aqueous extract,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 27, no. 8, pp. 547–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. K. Shah, M. Patel, R. Patel, and P. Parmar, “Mangifera indica (mango),” Pharmacognosy Reviews, vol. 4, no. 7, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Louisa, T. M. Soediro, and F. D. Suyatna, “In vitro modulation of P-glycoprotein, MRP-1 and BCRP expression by mangiferin in doxorubicin-treated MCF-7 cells,” Asian Pacific Journal of Cancer Prevention, vol. 15, no. 4, pp. 1639–1642, 2014. View at Publisher · View at Google Scholar · View at Scopus
  174. I. Rodeiro, M. José Gómez-Lechón, G. Perez et al., “Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes,” Phytotherapy Research, vol. 27, no. 5, pp. 745–752, 2013. View at Publisher · View at Google Scholar · View at Scopus
  175. N. Duarte, H. Lage, M. Abrantes, and M.-J. U. Ferreira, “Phenolic compounds as selective antineoplasic agents against multidrug-resistant human cancer cells,” Planta Medica, vol. 76, no. 10, pp. 975–980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. T. A. Mansoor, R. M. Ramalho, C. M. P. Rodrigues, and M.-J. U. Ferreira, “Dibenzylbutane- and butyrolactone-type lignans as apoptosis inducers in human hepatoma HuH-7 cells,” Phytotherapy Research, vol. 26, no. 5, pp. 692–696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  177. B.-E. Van Wyk and C. Albrecht, “A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae),” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 620–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. X. Fu, X.-C. Li, T. J. Smillie et al., “Cycloartane glycosides from Sutherlandia frutescens,” Journal of Natural Products, vol. 71, no. 10, pp. 1749–1753, 2008. View at Publisher · View at Google Scholar · View at Scopus
  179. X. Fu, X.-C. Li, Y.-H. Wang et al., “Flavonol glycosides from the South African medicinal plant Sutherlandia frutescens,” Planta Medica, vol. 76, no. 2, pp. 178–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. J. Tai, S. Cheung, E. Chan, and D. Hasman, “In vitro culture studies of Sutherlandia frutescens on human tumor cell lines,” Journal of Ethnopharmacology, vol. 93, no. 1, pp. 9–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. C. Vorster, A. Stander, and A. Joubert, “Differential signaling involved in Sutherlandia frutescens-induced cell death in MCF-7 and MCF-12A cells,” Journal of Ethnopharmacology, vol. 140, no. 1, pp. 123–130, 2012. View at Publisher · View at Google Scholar · View at Scopus
  182. T. V. Mqoco, M. H. Visagie, C. Albrecht, and A. M. Joubert, “Differential cellular interaction of Sutherlandia frutescens extracts on tumorigenic and non-tumorigenic breast cells,” South African Journal of Botany, vol. 90, pp. 59–67, 2014. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Lu, N. Starkey, W. Lei et al., “Inhibition of hedgehog-signaling driven genes in prostate cancer cells by Sutherlandia frutescens extract,” PLoS ONE, vol. 10, no. 12, Article ID e0145507, 2015. View at Publisher · View at Google Scholar · View at Scopus
  184. G. Leisching, B. Loos, T. Nell, and A.-M. Engelbrecht, “Sutherlandia frutescens treatment induces apoptosis and modulates the PI3-kinase pathway in colon cancer cells,” South African Journal of Botany, vol. 100, pp. 20–26, 2015. View at Publisher · View at Google Scholar · View at Scopus
  185. P. S. Fasinu, H. Gutmann, H. Schiller, A.-D. James, P. J. Bouic, and B. Rosenkranz, “The potential of sutherlandia frutescens for herb-drug interaction,” Drug Metabolism and Disposition, vol. 41, no. 2, pp. 488–497, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. P. Limtrakul, O. Khantamat, and K. Pintha, “Inhibition of P-glycoprotein function and expression by kaempferol and quercetin,” Journal of Chemotherapy, vol. 17, no. 1, pp. 86–95, 2005. View at Publisher · View at Google Scholar
  187. A. C. Müller, M. F. Skinner, and I. Kanfer, “Effect of the African traditional medicine, Sutherlandia frutescens, on the bioavailability of the antiretroviral protease inhibitor, atazanavir,” Evidence-based Complementary and Alternative Medicine, vol. 2013, Article ID 324618, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Minocha, N. K. Mandava, D. Kwatra et al., “Effect of short term and chronic administration of Sutherlandia frutescens on pharmacokinetics of nevirapine in rats,” International Journal of Pharmaceutics, vol. 413, no. 1-2, pp. 44–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. M. Moudi, R. Go, C. Y. S. Yien, and M. Nazre, “Vinca alkaloids,” International Journal of Preventive Medicine, vol. 4, no. 11, pp. 1231–1235, 2013. View at Google Scholar · View at Scopus
  190. H. Quan, Y. Xu, L. Hu, and L. Lou, “Abstract 2053: F-XA7, a novel derivative of vinca alkaloid with potent antitumor activity, efficiently overrides P-glycoprotein-mediated drug resistance both in vitro and in vivo,” Cancer Research, vol. 73, no. 8, supplement, p. 2053, 2013. View at Publisher · View at Google Scholar
  191. R. Mittra, E. M. Coyle, and R. Callaghan, “Just how and where does P-glycoprotein bind all those drugs?” in ABC Transporters—40 Years on, pp. 153–194, Springer, Berlin, Germany, 2016. View at Publisher · View at Google Scholar
  192. P. Limtrakul, O. Khantamat, and K. Pintha, “Inhibition of P-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract,” Cancer Chemotherapy and Pharmacology, vol. 54, no. 6, pp. 525–530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  193. Q. Mi, B. Cui, G. L. Silva et al., “Pervilleine A, a novel tropane alkaloid that reverses the multidrug-resistance phenotype,” Cancer Research, vol. 61, no. 10, pp. 4030–4037, 2001. View at Google Scholar · View at Scopus
  194. N. F. Smith, S. Mani, E. G. Schuetz et al., “Induction of CYP3A4 by vinblastine: role of the nuclear receptor NR1I2,” Annals of Pharmacotherapy, vol. 44, no. 11, pp. 1709–1717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. S. E. Drewes, E. Elliot, F. Khan, J. T. B. Dhlamini, and M. S. S. Gcumisa, “Hypoxis hemerocallidea—not merely a cure for benign prostate hyperplasia,” Journal of Ethnopharmacology, vol. 119, no. 3, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. J. Watt and M. Breyer Brandwijk, Medicinal and Poisonous Plants of Southern and Eastern Africa, E. & S. Livingstone Ltd, Edinburgh, UK, 2nd edition, S. & E. Africa.[At Museum.] Review article General article, Drug plants Medicinal plants Pharmacognosy Materia medica, Toxic plants Poisonous plants, geog, 1962.
  197. C. Albrecht, “Hypoxoside: a putative prodrug for the treatment of malignancies, HIV infections, and inflammatory conditions,” South African Medical Journal, vol. 85, pp. 302–307, 1995. View at Google Scholar
  198. A. Hutchings, A. H. Scott, G. Lewis, and A. Cunningham, Zulu Medicinal Plants: An Inventory, University of Kwazulu Natal Press, 1996.
  199. B.-E. Van Wyk and N. Gericke, People's Plants: A Guide to Useful Plants of Southern Africa, Briza Publications, Pretoria, South Africa, 2000.
  200. M. J. Van Der Merwe, K. Jenkins, E. Theron, and B. J. Van Der Walt, “Interaction of the di-catechols rooperol and nordihydroguaiaretic acid with oxidative systems in the human blood: a structure-activity relationship,” Biochemical Pharmacology, vol. 45, no. 2, pp. 303–311, 1993. View at Publisher · View at Google Scholar · View at Scopus
  201. C. F. Albrecht, E. J. Theron, and P. B. Kruger, “Morphological characterisation of the cell-growth inhibitory activity of rooperol and pharmacokinetic aspects of hypoxoside as an oral prodrug for cancer therapy,” South African Medical Journal, vol. 85, no. 9, pp. 853–860, 1995. View at Google Scholar · View at Scopus
  202. G. J. Boukes, The in vitro biological activities of three Hypoxis species and their active compounds [Ph.D. thesis], 2010.
  203. P. S. Fasinu, H. Gutmann, H. Schiller, P. J. Bouic, and B. Rosenkranz, “The potential of Hypoxis hemerocallidea for herb-drug interaction,” Pharmaceutical Biology, vol. 51, no. 12, pp. 1499–1507, 2013. View at Publisher · View at Google Scholar · View at Scopus
  204. Y. Naritomi, S. Terashita, and A. Kagayama, “Identification and relative contributions of human cytochrome P450 isoforms involved in the metabolism of glibenclamide and lansoprazole: evaluation of an approach based on the in vitro substrate disappearance rate,” Xenobiotica, vol. 34, no. 5, pp. 415–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. A. J. Scheen, “Pharmacokinetic interactions with thiazolidinediones,” Clinical Pharmacokinetics, vol. 46, no. 1, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  206. D. A. Flockhart and J. E. Tanus-Santos, “Implications of cytochrome P450 interactions when prescribing medication for hypertension,” Archives of Internal Medicine, vol. 162, no. 4, pp. 405–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  207. T. Takanohashi, S. Kubo, A. Nakayama, R. Mihara, and M. Hayashi, “Inhibition of human liver microsomal CYP by nateglinide,” Journal of Pharmacy and Pharmacology, vol. 62, no. 5, pp. 592–597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  208. S.-M. He, A.-K. Yang, X.-T. Li, Y.-M. Du, and S.-F. Zhou, “Effects of herbal products on the metabolism and transport of anticancer agents,” Expert Opinion on Drug Metabolism & Toxicology, vol. 6, no. 10, pp. 1195–1213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. S. J. Baldwin, S. E. Clarke, and R. J. Chenery, “Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone,” British Journal of Clinical Pharmacology, vol. 48, no. 3, pp. 424–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  210. D. F. V. Lewis, “Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families,” Current Medicinal Chemistry, vol. 10, no. 19, pp. 1955–1972, 2003. View at Publisher · View at Google Scholar · View at Scopus
  211. T. Lynch and A. Price, “The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects,” American Family Physician, vol. 76, no. 3, pp. 391–396, 2007. View at Google Scholar · View at Scopus
  212. A. Scomparin, S. Salmaso, A. Eldar-Boock et al., “A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index,” Journal of Controlled Release, vol. 208, pp. 106–120, 2015. View at Publisher · View at Google Scholar · View at Scopus
  213. S. Sharad, M. Patel, M. Bhuch, M. Chatterjee, and S. Shrivastava, “Regulatory status of traditional medicines in Africa Region,” International Journal of Research in Ayurveda and Pharmacy, vol. 2, no. 1, pp. 103–110, 2011. View at Google Scholar