Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017 (2017), Article ID 4520916, 11 pages
Research Article

Huang Gan Formula Eliminates the Oxidative Stress Effects of Advanced Oxidation Protein Products on the Divergent Regulation of the Expression of AGEs Receptors via the JAK2/STAT3 Pathway

1Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
2Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China

Correspondence should be addressed to Xixiao Yang

Received 6 December 2016; Accepted 27 February 2017; Published 30 March 2017

Academic Editor: Yoshiji Ohta

Copyright © 2017 Quanwen Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Chronic kidney disease (CKD) has a high prevalence and low cure rate and represents a significant health issue. Oxidative stress is common in CKD due to metabolic disorders, inflammation, and impaired renal function changing normal proteins into advanced oxidation protein products (AOPPs). Huang Gan formula (HGF) is a new type of traditional Chinese herbal medicine. Although we previously investigated the protective effects of HGF against oxidative stress, the mechanism of HGF in CKD is still not fully understood. In this study, we used western blotting, quantitative polymerase chain reaction, and biochemical assays to show that HGF significantly decreased AOPP-induced oxidative stress damage. Moreover, the protective effects of HGF might be associated with upregulation of the advanced glycation end product receptor 1 (AGE-R1) and downregulation of the receptor for advance glycation end products (RAGE). Treatment with HGF and the Janus kinase 2 (JAK2) inhibitor, AG4-90, significantly attenuated AOPP-induced JAK2/STAT3 protein levels. These findings indicate that HGF inhibits AOPP-mediated biological responses by inactivating the JAK2/STAT3 pathway. In conclusion, HGF eliminated AOPP-induced effects in human mesangial cells (HMCs) by interrupting JAK2/STAT3 signaling, which altered RAGE/AGE-R1 expression and reduced oxidative stress in CKD.