Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017 (2017), Article ID 4780746, 10 pages
https://doi.org/10.1155/2017/4780746
Research Article

Antifungal Activity of the Ethanol Extract from Flos Rosae Chinensis with Activity against Fluconazole-Resistant Clinical Candida

New Drug Research and Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China

Correspondence should be addressed to YongBing Cao and Yuan-Ying Jiang

Received 10 October 2016; Revised 22 November 2016; Accepted 1 December 2016; Published 20 February 2017

Academic Editor: Letizia Angiolella

Copyright © 2017 Lulu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Maertens, M. Vrebos, and M. Boogaerts, “Assessing risk factors for systemic fungal infections,” European Journal of Cancer Care, vol. 10, no. 1, pp. 56–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Turner and G. Butler, “The Candida pathogenic species complex,” Cold Spring Harbor Perspectives in Medicine, vol. 4, no. 9, Article ID a019778, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Snydman, “Shifting patterns in the epidemiology of nosocomial Candida infections,” Chest, vol. 123, no. 5, pp. 500S–503S, 2003. View at Google Scholar · View at Scopus
  4. M. Niimi, N. A. Firth, and R. D. Cannon, “Antifungal drug resistance of oral fungi,” Odontology, vol. 98, no. 1, pp. 15–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wilkerson, C. McPherson, and A. Donze, “Fluconazole to prevent systemic fungal infections in infants: reviewing the evidence,” Neonatal Network : NN, vol. 29, no. 5, pp. 323–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Gullo, “Invasive fungal infections: the challenge continues,” Drugs, vol. 69, supplement 1, pp. 65–73, 2009. View at Google Scholar · View at Scopus
  7. A. Volleková, D. Košt'Álová, V. Kettmann, and J. Tóth, “Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids,” Phytotherapy Research, vol. 17, no. 7, pp. 834–837, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Yang, H. Hu, S. Huang, J. P. Chaumont, and J. Millet, “Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria,” Zhong Yao Cai, vol. 23, no. 5, pp. 272–274, 2000. View at Google Scholar · View at Scopus
  9. B.-D. Dai, Y.-Y. Cao, S. Huang et al., “Baicalein induces programmed cell death in Candida albicans,” Journal of Microbiology and Biotechnology, vol. 19, no. 8, pp. 803–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J.-D. Zhang, Y.-B. Cao, Z. Xu et al., “In Vitro and in Vivo antifungal activities of the eight steroid saponins from Tribulus terrestris L. with potent activity against fluconazole-resistant fungal,” Biological and Pharmaceutical Bulletin, vol. 28, no. 12, pp. 2211–2215, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-M. Xie and Y. Xu, “Advances in study on anti-fungal mechanism of Chinese herbal medicines,” Zhongguo Zhong Yao Za Zhi, vol. 29, no. 3, pp. 200–202, 2004. View at Google Scholar · View at Scopus
  12. V. Kuete, D. C. Fozing, W. F. G. D. Kapche et al., “Antimicrobial activity of the methanolic extract and compounds from Morus mesozygia stem bark,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 551–555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Duraipandiyan and S. Ignacimuthu, “Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam,” Journal of Ethnopharmacology, vol. 123, no. 3, pp. 494–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ponnusamy, C. Petchiammal, R. Mohankumar, and W. Hopper, “In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. Br.,” Journal of Ethnopharmacology, vol. 132, no. 1, pp. 349–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. D. Tamokou, M. F. Tala, H. K. Wabo, J. R. Kuiate, and P. Tane, “Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 571–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Huang, Y. Y. Cao, B. D. Dai et al., “In vitro synergism of fluconazole and Baicalein against clinical isolates of Candida albicans resistant to fluconazole,” Biological and Pharmaceutical Bulletin, vol. 31, no. 12, pp. 2234–2236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Quan, Y.-Y. Cao, Z. Xu et al., “Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 3, pp. 1096–1099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. X. Li and H. Zhang, “In vitro study of the synergistic effect of tetrandrine and fluconazole against Candida albicans,” Chinese Journal of Dermatology, vol. 39, no. 8, pp. 454–456, 2006. View at Google Scholar
  19. W. Craig and S. Gudmundsson, Antibiotics in Laboratory Medicine, Williams & Wilkins, Baltimore, MD, USA, 1996.
  20. J. Waitz, M. Bartlett, M. Ghannoum et al., Reference Method of Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved standard M27-A National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 1997.
  21. F. C. Odds, “Synergy, antagonism, and what the chequerboard puts between them,” Journal of Antimicrobial Chemotherapy, vol. 52, no. 1, p. 1, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. E. Klepser, E. J. Wolfe, R. N. Jones, C. H. Nightingale, and M. A. Pfaller, “Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 6, pp. 1392–1395, 1997. View at Google Scholar · View at Scopus
  23. O. Marchetti, P. Moreillon, M. P. Glauser, J. Bille, and D. Sanglard, “Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 9, pp. 2373–2381, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. G. M. Eliopoulos and R. C. Moellering, “Antimicrobial combinations,” in Antibiotics in Laboratory Medicine, V. Lorian, Ed., pp. 330–396, 1996. View at Google Scholar
  25. N. Tsuchimori, R. Hayashi, N. Kitamoto et al., “In vitro and in vivo antifungal activities of TAK-456, a novel oral triazole with a broad antifungal spectrum,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 5, pp. 1388–1393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Amareshwar, S. J. Patil, and N. Goudgaon, “Synthesis, in vitro and in vivo antifungal activity of 5-phenylthio-2,4-bisbenzyloxypyrimidine: a novel nucleobase,” Indian Journal of Pharmaceutical Sciences, vol. 72, no. 6, pp. 778–781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Y. Ju, C. Polhamus, K. A. Marr, S. M. Holland, and J. E. Bennett, “Efficacies of fluconazole, caspofungin, and amphotericin B in Candida glabrata-infected p47phox−/− knockout mice,” Antimicrob Agents Chemother, vol. 46, no. 5, pp. 1240–1245, 2002. View at Google Scholar
  28. K. Maki, A. R. Holmes, E. Watabe et al., “Direct comparison of the pharmacodynamics of four antifungal drugs in a mouse model of disseminated candidiasis using microbiological assays of serum drug concentrations,” Microbiology and Immunology, vol. 51, no. 11, pp. 1053–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Marchetti, J. M. Entenza, D. Sanglard, J. Bille, M. P. Glauser, and P. Moreillon, “Fluconazole plus cyclosporine: a fungicidal combination effective against experimental due to Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 44, no. 11, pp. 2932–2938, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Pitzurra, R. Fringuelli, S. Perito et al., “A new azole derivative of 1,4-benzothiazine increases the antifungal mechanisms of natural effector cells,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 9, pp. 2170–2175, 1999. View at Google Scholar · View at Scopus
  31. J. D. Zhang, M. H. Li, L. Yan et al., “DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain,” Acta Biochimica et Biophysica Sinica (Shanghai), vol. 40, no. 12, pp. 1048–1060, 2008. View at Google Scholar
  32. C. Chiesi, C. Fernandez-Blanco, L. Cossignani, G. Font, and M. J. Ruiz, “Alternariol-induced cytotoxicity in Caco-2 cells. Protective effect of the phenolic fraction from virgin olive oil,” Toxicon, vol. 93, pp. 103–111, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. S. C. Tripathi and S. N. Dixit, “Fungitoxic properties of Rosa chinensis Jacq,” Experientia, vol. 33, no. 2, pp. 207–209, 1977. View at Publisher · View at Google Scholar · View at Scopus
  34. D.-D. Li, Y. Xu, D.-Z. Zhang et al., “Fluconazole assists berberine to kill fluconazole-resistant Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 12, pp. 6016–6027, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. M. An, H. Shen, Y. Cao et al., “Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans,” International Journal of Antimicrobial Agents, vol. 33, no. 3, pp. 258–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Zhang, Y. Xue, L. S. Qing, J. F. An, X. Liao, and L. S. Ding, “The main chemical composition of Rosa Chinensis Jacq.,” Chinese Traditional and Herbal Drug, no. 10, pp. 1616–1618, 2010. View at Google Scholar
  37. D. Seleem, V. Pardi, and R. M. Murata, “Review of flavonoids: a diverse group of natural compounds with anti-Candida albicans activity in vitro,” Archives of Oral Biology, vol. 76, pp. 76–83, 2017. View at Publisher · View at Google Scholar
  38. S. J. Sun, H. F. Guo, H. X. Luo et al., “Antifungal activities of phenolic compounds against Candida albicans and their structureactivity relationship,” Food and Drug, vol. 8, no. 3A, pp. 30–36, 2006. View at Google Scholar
  39. M. Zuzarte, L. Vale-Silva, M. J. Gonçalves et al., “Antifungal activity of phenolic-rich Lavandula multifida L. Essential oil,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 31, no. 7, pp. 1359–1366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. M. S. Pereira, C. Hernandes, S. I. V. Pereira et al., “Evaluation of anticandidal and antioxidant activities of phenolic compounds from Pyrostegia venusta (Ker Gawl.) Miers,” Chemico-Biological Interactions, vol. 224, pp. 136–141, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Manayi, S. Saeidnia, M. A. Faramarzi et al., “A comparative study of anti-Candida activity and phenolic contents of the calluses from Lythrum salicaria L. in different treatments,” Applied Biochemistry and Biotechnology, vol. 170, no. 1, pp. 176–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. X.-C. Li, M. R. Jacob, D. S. Pasco et al., “Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases,” Journal of Natural Products, vol. 64, no. 10, pp. 1282–1285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. D. G. Lee, Y. Park, M.-R. Kim et al., “Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense,” Biotechnology Letters, vol. 26, no. 14, pp. 1125–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. C. T. Alves, I. C. F. R. Ferreira, L. Barros, S. Silva, J. Azeredo, and M. Henriques, “Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species,” Future Microbiology, vol. 9, no. 2, pp. 139–146, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. N. N. R. Cardoso, C. S. Alviano, A. F. Blank et al., “Synergism effect of the essential oil from Ocimum basilicum var. Maria Bonita and its major components with fluconazole and its influence on ergosterol biosynthesis,” Evidence-based Complementary and Alternative Medicine, vol. 2016, Article ID 5647182, 12 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Sanglard, F. Ischer, T. Parkinson, D. Falconer, and J. Bille, “Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 8, pp. 2404–2412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Lupetti, R. Danesi, M. Campa, M. D. Tacca, and S. Kelly, “Molecular basis of resistance to azole antifungals,” Trends in Molecular Medicine, vol. 8, no. 2, pp. 76–81, 2002. View at Publisher · View at Google Scholar · View at Scopus