Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

Evidence-Based Complementary and Alternative Medicine
Volume 2017, Article ID 5642708, 11 pages
https://doi.org/10.1155/2017/5642708
Research Article

Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice

1Center for Drug Abuse and Addiction, China Medical University Hospital, China Medical University, Taichung, Taiwan
2School of Chinese Medicine, China Medical University, Taichung, Taiwan
3Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
4Division of Chinese Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
5Division of Basic Medical Sciences, Department of Nursing, Chang Gung Institute of Technology and Chronic Diseases and Health Promotion Research Center, Chiayi, Taiwan
6Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
7Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
8Graduate Institute of Biomedical Sciences and Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
9Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
10Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan

Correspondence should be addressed to Chieh-Liang Huang; moc.liamg@lch.ehcysp and Yao-Chang Chiang; moc.liamg@gnaihc.gnahcoay

Received 27 July 2016; Revised 25 October 2016; Accepted 2 November 2016; Published 16 March 2017

Academic Editor: Hyunsu Bae

Copyright © 2017 Tsung-Jung Ho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-C. Chiang and J.-C. Chen, “The role of the cannabinoid type 1 receptor and down-stream cAMP/DARPP-32 signal in the nucleus accumbens of methamphetamine-sensitized rats,” Journal of Neurochemistry, vol. 103, no. 6, pp. 2505–2517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Wolf, “Addiction: making the connection between behavioral changes and neuronal plasticity in specific pathways,” Molecular Interventions, vol. 2, no. 3, pp. 146–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. B. Rothman, B. E. Blough, and M. H. Baumann, “Dual dopamine/serotonin releasers: potential treatment agents for stimulant addiction,” Experimental and Clinical Psychopharmacology, vol. 16, no. 6, pp. 458–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. J. Nestler, “Is there a common molecular pathway for addiction?” Nature Neuroscience, vol. 8, no. 11, pp. 1445–1449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Kitanaka, N. Kitanaka, and M. Takemura, “Modification of monoaminergic activity by MAO inhibitors influences methamphetamine actions,” Drug Target Insights, vol. 1, pp. 19–28, 2006. View at Google Scholar
  6. Substance Abuse and Mental Health Services Administration and Center for Behavioral Health Statistics and Quality, The DAWN Report: Emergency Department Visits Involving Methamphetamine: 2007 to 2011, CBHSQ/SAMHSA, Rockville, Md, USA, 2007.
  7. J. G. Lin, Y. Y. Chan, and Y. H. Chen, “Acupuncture for the treatment of opiate addiction,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 739045, 10 pages, 2012. View at Publisher · View at Google Scholar
  8. S. S. Yoon, E. J. Yang, B. H. Lee et al., “Effects of acupuncture on stress-induced relapse to cocaine-seeking in rats,” Psychopharmacology, vol. 222, no. 2, pp. 303–311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y.-H. Chen, B. Ivanic, C.-M. Chuang, D.-Y. Lu, and J.-G. Lin, “Electroacupuncture reduces cocaine-induced seizures and mortality in mice,” Evidence-based Complementary and Alternative Medicine, vol. 2013, Article ID 134610, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. K. W. Kim, H. W. Kim, J. Li, and Y. B. Kwon, “Effect of bee venom acupuncture on methamphetamine-induced hyperactivity, hyperthermia and Fos expression in mice,” Brain Research Bulletin, vol. 84, no. 1, pp. 61–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-Y. Chan, W.-Y. Lo, T.-C. Li et al., “Clinical efficacy of acupuncture as an adjunct to methadone treatment services for heroin addicts: a randomized controlled trial,” American Journal of Chinese Medicine, vol. 42, no. 3, pp. 569–586, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. S. K. Avants, A. Margolin, P. Chang, T. R. Kosten, and S. Birch, “Acupuncture for the treatment of cocaine addiction investigation of a needle puncture control,” Journal of Substance Abuse Treatment, vol. 12, no. 3, pp. 195–205, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. T. K. Killeen, B. Haight, K. Brady et al., “The effect of auricular acupuncture on psychophysiological measures of cocaine craving,” Issues in Mental Health Nursing, vol. 23, no. 5, pp. 445–459, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-S. Lee, S.-G. Kim, T.-G. Jung, W. Y. Jung, and S.-Y. Kim, “Effect of Zhubin (KI9) acupuncture in reducing alcohol craving in patients with alcohol dependence: a randomized placebo-controlled trial,” Chinese Journal of Integrative Medicine, vol. 21, no. 4, pp. 307–311, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Boyuan, C. Yang, C. Ke, S. Xueyong, and L. Sheng, “Efficacy of acupuncture for psychological symptoms associated with opioid addiction: a systematic review and meta-analysis,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 313549, 13 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. A. White, “Trials of acupuncture for drug dependence: a recommendation for hypotheses based on the literature,” Acupuncture in Medicine, vol. 31, no. 3, pp. 297–304, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Lee, S.-M. Han, and I. Shim, “Acupuncture attenuates cocaine-induced expression of behavioral sensitization in rats: possible involvement of the dopaminergic system in the ventral tegmental area,” Neuroscience Letters, vol. 449, no. 2, pp. 128–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-S. Han, “Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies,” Trends in Neurosciences, vol. 26, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. S. Yin, H.-S. Jeong, H.-J. Park et al., “A proposed transpositional acupoint system in a mouse and rat model,” Research in Veterinary Science, vol. 84, no. 2, pp. 159–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. R. Dunkley, L. Bobrovskaya, M. E. Graham, E. I. von Nagy-Felsobuki, and P. W. Dickson, “Tyrosine hydroxylase phosphorylation: regulation and consequences,” Journal of Neurochemistry, vol. 91, no. 5, pp. 1025–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-C. Chiang, T.-W. Hung, and I.-K. Ho, “Development of sensitization to methamphetamine in offspring prenatally exposed to morphine, methadone and buprenorphine,” Addiction Biology, vol. 19, no. 4, pp. 676–686, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Huston, M. A. D. S. Silva, B. Topic, and C. P. Müller, “What's conditioned in conditioned place preference?” Trends in Pharmacological Sciences, vol. 34, no. 3, pp. 162–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. Z.-Q. Liu, X.-H. Gu, Y.-J. Yang, X.-P. Yin, L.-J. Xu, and W. Wang, “D-serine in the nucleus accumbens region modulates behavioral sensitization and extinction of conditioned place preference,” Pharmacology Biochemistry and Behavior, vol. 143, pp. 44–56, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-C. Chen, P.-C. Chen, and Y.-C. Chiang, “Molecular mechanisms of psychostimulant addiction,” Chang Gung Medical Journal, vol. 32, no. 2, pp. 148–154, 2009. View at Google Scholar · View at Scopus
  25. S. Ikemoto, “Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex,” Brain Research Reviews, vol. 56, no. 1, pp. 27–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Friend, A. N. Fricks-Gleason, and K. A. Keefe, “Is there a role for nitric oxide in methamphetamine-induced dopamine terminal degeneration?” Neurotoxicity Research, vol. 25, no. 2, pp. 153–160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Lindgren, Z.-Q. D. Xu, M. Herrera-Marschitz, J. Haycock, T. Hökfelt, and G. Fisone, “Dopamine D2 receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum,” European Journal of Neuroscience, vol. 13, no. 4, pp. 773–780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bortolato and J. C. Shih, “Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence,” International Review of Neurobiology, vol. 100, pp. 13–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Chen, D. P. Holschneider, W. Wu, I. Rebrin, and J. C. Shih, “A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior,” The Journal of Biological Chemistry, vol. 279, no. 38, pp. 39645–39652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Shih, K. Chen, and M. J. Ridd, “Role of MAO A and B in neurotransmitter metabolism and behavior,” Polish Journal of Pharmacology, vol. 51, no. 1, pp. 25–29, 1999. View at Google Scholar · View at Scopus
  31. R. de la Torre, S. Yubero-Lahoz, R. Pardo-Lozano, and M. Farré, “MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?” Frontiers in Genetics, vol. 3, article 235, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L.-W. Chuang, F. Karoum, and R. J. Wyatt, “Different effects of behaviorally equipotent doses of amphetamine and methamphetamine on brain biogenic amines: specific increase of phenylethylamine by amphetamine,” European Journal of Pharmacology, vol. 81, no. 3, pp. 385–392, 1982. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-C. Qi, X.-J. Xiao, R.-S. Duan et al., “Effect of acupuncture on inflammatory cytokines expression of spastic cerebral palsy rats,” Asian Pacific Journal of Tropical Medicine, vol. 7, no. 6, pp. 492–495, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Song, U. Halbreich, C. Han, B. E. Leonard, and H. Luo, “Imbalance between pro- and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment,” Pharmacopsychiatry, vol. 42, no. 5, pp. 182–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Felger and F. E. Lotrich, “Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications,” Neuroscience, vol. 246, pp. 199–229, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. J. C. Felger and A. H. Miller, “Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise,” Frontiers in Neuroendocrinology, vol. 33, no. 3, pp. 315–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Gonçalves, T. Martins, R. Ferreira et al., “Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain,” Annals of the New York Academy of Sciences, vol. 1139, no. 1, pp. 103–111, 2008. View at Publisher · View at Google Scholar
  38. X. Cao, L. Rui, P. R. Pennington et al., “Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity,” Journal of Neurochemistry, vol. 111, no. 1, pp. 101–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Ming, C. A. Wotton, R. T. Appleton et al., “Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity,” Journal of Neuroinflammation, vol. 12, no. 1, article 37, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Hu, M. Lai, J. Wei et al., “The effect of electroacupuncture on extinction responding of heroin-seeking behavior and FosB expression in the nucleus accumbens core,” Neuroscience Letters, vol. 534, no. 1, pp. 252–257, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Kim, B. H. Lee, J. H. Bae et al., “Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats,” PLoS ONE, vol. 8, no. 11, Article ID e81018, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Zhao, S. C. Kim, R. Zhao et al., “The tegmental-accumbal dopaminergic system mediates the anxiolytic effect of acupuncture during ethanol withdrawal,” Neuroscience Letters, vol. 597, pp. 143–148, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. T.-M. Zhu, H. Li, R.-J. Jin et al., “Effects of electroacupuncture combined psycho-intervention on cognitive function and event-related potentials P300 and mismatch negativity in patients with internet addiction,” Chinese Journal of Integrative Medicine, vol. 18, no. 2, pp. 146–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Ma, J. S. Han, Q. H. Diao et al., “Transcutaneous electrical acupoint stimulation for the treatment of withdrawal syndrome in heroin addicts,” Pain Medicine, vol. 16, no. 5, pp. 839–848, 2015. View at Publisher · View at Google Scholar
  45. Z.-L. Guo, M. Li, and J. C. Longhurst, “Nucleus ambiguus cholinergic neurons activated by acupuncture: relation to enkephalin,” Brain Research, vol. 1442, pp. 25–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. F. E. Motlagh, F. Ibrahim, R. A. Rashid, T. Seghatoleslam, and H. Habil, “Acupuncture therapy for drug addiction,” Chinese Medicine, vol. 11, article 16, 2016. View at Publisher · View at Google Scholar
  47. J.-G. Lin and W.-L. Chen, “Acupuncture analgesia: a review of its mechanisms of actions,” American Journal of Chinese Medicine, vol. 36, no. 4, pp. 635–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-S. Han, “Acupuncture and endorphins,” Neuroscience Letters, vol. 361, no. 1–3, pp. 258–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Yi, H. Zhang, L. Lao, G.-G. Xing, and Y. Wan, “Anterior cingulate cortex is crucial for contra- but not ipsi-lateral electro-acupuncture in the formalin-induced inflammatory pain model of rats,” Molecular Pain, vol. 7, article 61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. S. Chang, Acupuncture Anatomy: Regional Micro-Anatomy and Systemic Acupuncture Networks, CRC Press, Taylor & Francis Group, 2016.
  51. F. Kagitani, S. Uchida, and H. Hotta, “Afferent nerve fibers and acupuncture,” Autonomic Neuroscience: Basic and Clinical, vol. 157, no. 1-2, pp. 2–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Goldman, M. Chen, T. Fujita et al., “Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture,” Nature Neuroscience, vol. 13, no. 7, pp. 883–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. J. Zylka, “Needling adenosine receptors for pain relief,” Nature Neuroscience, vol. 13, no. 7, pp. 783–784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Mannerås, S. Cajander, M. Lönn, and E. Stener-Victorin, “Acupuncture and exercise restore adipose tissue expression of sympathetic markers and improve ovarian morphology in rats with dihydrotestosterone-induced PCOS,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 296, no. 4, pp. R1124–R1131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. G. F. Koob, “Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory,” Pharmacopsychiatry, vol. 42, no. 1, pp. S32–S41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Sakatani, T. Kitagawa, N. Aoyama, and M. Sasaki, “Effects of acupuncture on autonomic nervous function and prefrontal cortex activity,” Advances in Experimental Medicine and Biology, vol. 662, pp. 455–460, 2010. View at Publisher · View at Google Scholar
  57. G. Ter Riet, J. Kleijnen, and P. Knipschild, “A meta-analysis of studies into the effect of acupuncture on addiction,” British Journal of General Practice, vol. 40, no. 338, pp. 379–382, 1990. View at Google Scholar · View at Scopus
  58. S. Grant, R. Kandrack, A. Motala et al., “Acupuncture for substance use disorders: a systematic review and meta-analysis,” Drug and Alcohol Dependence, vol. 163, pp. 1–15, 2016. View at Publisher · View at Google Scholar
  59. C. H. Yang, B. H. Lee, and S. H. Sohn, “A possible mechanism underlying the effectiveness of acupuncture in the treatment of drug addiction,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 3, pp. 257–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S.-L. Chang, C.-C. Tsai, J.-G. Lin, C.-L. Hsieh, R.-T. Lin, and J.-T. Cheng, “Involvement of serotonin in the hypoglycemic response to 2 Hz electroacupuncture of zusanli acupoint (ST36) in rats,” Neuroscience Letters, vol. 379, no. 1, pp. 69–73, 2005. View at Publisher · View at Google Scholar · View at Scopus