Table of Contents Author Guidelines Submit a Manuscript
Evidence-Based Complementary and Alternative Medicine
Volume 2017 (2017), Article ID 6178358, 11 pages
Research Article

Yinchen Linggui Zhugan Decoction Ameliorates Nonalcoholic Fatty Liver Disease in Rats by Regulating the Nrf2/ARE Signaling Pathway

1Beijing University of Chinese Medicine, No. 11, North Third Ring East Road, Beijing 100029, China
2Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6, 1st Section, Fangxingyuan, Fangzhuang, Beijing 100078, China

Correspondence should be addressed to Hai-xiao Han

Received 17 May 2017; Revised 11 July 2017; Accepted 30 July 2017; Published 28 August 2017

Academic Editor: Jing-Hua Wang

Copyright © 2017 Yi Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Yinchen Linggui Zhugan Decoction (YCLGZGD) is the combination of Linggui Zhugan (LGZGD) and Yinchenhao (YCHD) decoctions, two famous traditional Chinese medicine prescriptions. In previous studies, we found that Yinchen Linggui Zhugan Decoction (YCLGZGD) could regulate lipid metabolism disorder and attenuate inflammation in pathological process of nonalcoholic fatty liver disease (NAFLD). However, the exact underlying mechanism remains unknown. The aim of this study was to explore the effect of Yinchen Linggui Zhugan Decoction on experimental NAFLD and its mechanism in rats with high-fat diet (HFD) which was established by 8-week administration of HFD. YCLGZGD, LGZGD, and YCHD were administered daily for 4 weeks, after which the rats were euthanized. The level of blood lipid, liver enzymes, H&E, and Oil Red O staining were determined to evaluate NAFLD severity. Western blotting and real-time polymerase chain reaction were, respectively, used to determine hepatic protein and gene expression of Keap1, Nrf2, NQO1, and HO-1. Oral YCLGZGD ameliorated HFD-induced NAFLD. Furthermore, YCLGZGD increased the protein and gene expression of Nrf2, NQO1, and HO-1 without changing Keap1. Overall, these results suggest that YCLGZGD ameliorates HFD-induced NAFLD in rats by upregulating the Nrf2/ARE signaling pathway.