Review Article

A Review of Complementary and Alternative Medicine Therapies on Muscular Atrophy: A Literature Review of In Vivo/In Vitro Studies

Table 2

Summary of articles on complementary and alternative medicine therapies for muscular atrophy (in vivo).

First Author (year) (Ref)DesignOriginGroup / Sample-Size (n)Sample Model (Age) (M/F)DurationOutcome MeasuresQuantity and Type of InterventionMain outcomes

Onda A 2011 [5]In vivoJapanTotal n = 28
control (7)
HS (7)
HS + MA (7)
HS + EA (7)
Hindlimb suspension (HS) rat model
(C57BL/6, 8 wk, M)
2 wk(1) Muscle weight/body weight
(2) Cross sectional area (CSA)
(3) Muscle-proteolytic genes
(4) Protein synthesis markers
MA (manual acupuncture): 30 min on the gastrocnemius, 5 mm insert
EA (electro-acupuncture): 30 min on the gastrocnemius, 5 mm insert, 1 Hz, 6.5 mA
1/day for 2wk
(1) Muscle/body weight:
HS < HS+MA (7%, p<0.05)
HS < HS+EA (10%, p<0.001)
(2) CSA: HS > HS+EA (p<0.05)
(3) Atrogin-1↓, MuRF1↓ in EA (p<0.01 vs. HS)
Atrogin-1↓ in MA (p<0.01 vs. HS)
(4) Akt1↑, TRPV4↑ in MA (p<0.05 vs. HS)

Su Z
2015
[6]
In vivoChinaTotal n = 48
control (12)
LFES (12)
Diabetes (12)
Diabetes + LFES (12)
Streptozotocin-induced diabetic mouse model
(C57BL/6, 8-10 wk, M)
2 wk(1) Muscle grip function
(2) Muscle weight/body weight
(3) Muscle regeneration proteins
(4) Protein synthesis markers
LFES (Low-frequency electric
stimulation):
positive point at GB34,
negative point at ST36
20 Hz, 1 mA for 15 min
1/day for 2wk
(1) Muscle grip function: DM + LFES > DM (p<0.05)
(2) Muscle weight (Soleus, Extensor digitorum longus): DM + LFES > DM (p<0.05)
(3) Pax7↑, MyoD↑, myogenin↑, eMyHC↑ (p<0.05 vs. DM)
(4) IGF-1↑, p-Akt↑, mTOR↑, p70S6K↑ (p<0.05 vs. DM)

Dong Y 2015
[7]
In vivoChinaTotal n =72
Control + Saline (12)
Control + BJ (12)
Control + AP (12)
COPD + Saline (12)
COPD + BJ (12)
COPD + AP (12)
Klebsiella pneumoniae & cigarette smoke-induced COPD rat model
(Sprague-Dawley (SD) rat, 2 mo, M/F)
12 wk(1) Muscular tension
(2) Muscular fatigue index
(3) Expressions of Bnip3 and Cyto-C in muscle tissues
BJ: Bufei Jianpi granules
(5 g·kg−1·d−1)
AP: Aminophylline
(2.3 mg·kg−1·d−1)
Intragastrically inserted
(1) Muscular tension: BJ > Saline, AP (p<0.05)
(2) Muscular fatigue: BJ < Saline, AP (P<0.05)
(3) Bnip3↓, CytoC↓ (p<0.05 vs. Saline, AP)

Zhuang P 2016 [8]In vivoChinaTotal n = 60
Normal + Water (C) (20)
Tumor + Water (M) (20)
Tumor + ZBHP (20)
C26-colon- adenocarcinoma-implanted mice
(C57BL/6, 4-6 wk, M)
19 d(1) Muscle weight
(2) Muscle function
(3) Pro-inflammatory cytokines
(4) Atrophy-related genes
(5) IGF-1/Akt and autophagy pathway
ZHBP: Zhimu (Rhizoma Anemarrhena) and Huangbai (Cortex Phellodendri) 1:1 extracted with ethanol
104 mg/kg/day, oral intake
(1) Muscle weight: ZHBP > M (p<0.05)
(2) Grip-strength: ZHBP > M (p<0.01)
(3) TNF-α, IL-6: ZHBP < M (p<0.05)
IGF-1: ZHBP > M (p<0.01)
(4) Atrogin-1↓, MuRF1↓ (p<0.05 vs. M)
(5) SRIT1↑, p-Akt↑, FOXO3↓ (p<0.05 vs. M)

Kishida Y 2014 [9]In vivoJapanTotal n = 41
SAMP8 + N (10)
SAMP8 + GJG (10)
SAMR1 + N (10)
SAMR1 + GJG (11)
Senescence-accelerated rat model (SAMP8)
Senescence-accelerated aging-resistant rat model (SAMR1)
(7 wk, M)
38 wk(1) Muscle fiber size
(2) Myofiber balance (fast/slow)
(3) Glycogen synthesis proteins
(4) Muscle atrophy proteins
GJG: Go-sha-jinki-Gan
4% (w/w) GJG daily for 38 wk
N (Control): normal diet
(1) Muscle fiber: P8+N < P8+GJG (p<0.0001)
(2) Fast skeletal muscle: P8+N <P8+ GJG (p<0.0001)
p-AMPK↑, PGC-1α↑ in P8+GJG
(3) IGF-1↑, p-Akt↑, p-GSK3β
(4) p-FoxO4↑, MuRF1↓, TNF-α

Hu L
2015 [10]
In vivoChinaTotal n = 48
Sham (Sham op) (12)
Sham-LFES (12)
CKD (12)
CKD-LFES (12)
5/6-nephrectomized rat model (mice with chronic kidney disease) (n r, n r, n r)15 d(1) Muscle mass (soleus & extensor digitorum longus)
(2) Grip strength meter
(3) Synthesis-related proteins
(4) IGF-1 and MGF
LFES: Low-frequency electric
Stimulation acupuncture
positive point (GB34)
negative point (ST36), 20Hz, 1mA 15 min 1/day for 15 d needles: 0.25 mm (diameter)
(1) Muscle mass: Sham Sham-LFES
CKD < CKD-LFES (p<0.05)
(2) Muscle function: CKD < CKD-LFES (p<0.05)
(3) p-Akt, mTOR, p70S6K: CKD < CKD-LFES (p<0.05)
(4) IGF-1, MGF: CKD < CKD-LFES (p<0.05)

Nakashima Y
2014 [11]
In vivoJapanTotal n = 16
Control (8)
CSD (8)
ALDH22 Tg rat model
(selectively decrease ALDH2 activity)
(C57BL/6 mice, n r, M)
6 mo(1) Oxidative stress marker
(2) Muscle tissue injury marker
(3) Body weight
(4) Gastrocnemius cell size
(5) Mitochondrial cytochrome C oxidase activity
CSD: Chlorella-supplemented diet 1% for 6 mo

Control: fed basic diet
(1) Urinary isoprostane: CSD < Control (after 4 mo, p<0.05)
MDA, HAE: CSD < Control (p<0.01)
(2) CPK activity: CSD < Control (p<0.05)
CKMB activity: CSD < Control
(3) Body weight: CSD > Control (after 4 mo, p<0.05)
(4) Cell size: CSD > Control (p<0.05)
(5) Cyto-C oxidase activity: CSD < Control (p<0.01)

Kim MJ
2012
[12]
In vivoKoreaTotal n = 12
Control (4)
CIA (4)
CIA+Moxi (4)
Collagen-induced arthritis (CIA) rat model (Inj of bovine type II collagen)
(DBA/1J mice, 6 wk, M)
3 wk(1) Cross-sectional area
(2) Phospho-ERK1/2
(3) Myostatin protein
(4) IGF-1 mRNA
Moxi: Moxibustion BL23 (shenshu), ST36 (zusnali) on both sides
5 times/day every other day for 3 wk
Kangwha-moxi cone 0.025g per 1point
(1) CSA: Control > CIA+Moxi > CIA (p<0.05)
(2) phospho-ERK1/2: CIA > CIA+Moxi
(3) Myostatin protein: CIA > CIA+Moxi
(4) IGF-1: CIA+Moxi > CIA

Kim JW
2015 [13]
In vivoKoreaTotal n = 48
Control (8)
Dexa control (8)
Dexa + OM (8)
Dexa + FS125 (8)
Dexa + FS250 (8)
Dexa + FS500 (8)
Dexamethasone-induced muscle atrophy mice
(SPF/VAF mice, n r, n r)
24 d(1) Muscle mass
(2) Muscle strength
(3) Serum biochemistry
(4) Antioxidant defense factor
(5) mRNA expression
FS: Fructus Schisandrae extract 125, 250, 500mg/kg, 1/day for 24 d oral intake
OM: Oxymetholone 50 mg/kg
(1) Muscle mass
(a) Body weight: Dexa < FS125 < FS250 < OM < FS500 (p<0.01)
(b) Calf, Gastrocnemius thickness: Dexa < FS 125 < FS250 < FS 500 < OM (p<0.01)
(2) Muscle strength: Dexa < FS250, FS500 (p<0.01)
(3) Serum creatine↓, CK↓, LDH↑ (p<0.01 vs. Control)
(4) MDA↓, ROS↓, GSH↓, SOD↓, CAT↓
(5) Atrogin-1↓, MuRF1↓, SIRT1↓, PI3K↑, Akt1↑, A1R↑ (p<0.05 vs. control)

Zhang J
2014 [14]
In vivoChinaTotal n = 45
Normal (C) (15)
Diabetes (M) (15)
Diabetes + ZB (15)
Insulin deficiency rat model by low-dose STZ injection
(C57BL/6, 12 wk, M)
6 wk(1) Muscle weight
(2) Muscle function
(3) Myofiber CSA
(4) IGF1, Akt/mTOR/FoxO3 signal pathways
ZB: Zhimu-Huangbai (1:1) herb pair 0.1ml/10g, 1/day for 6 wk
C, M: Normal saline treated
(1) Muscle (quadriceps) weight: ZB > M (p<0.05)
(2) Muscle strength: ZB > M (p<0.01)
(3) CSA: ZB > M (p<0.05)
(4) IGF-1↑, Akt↑, mTOR↑, p-S6K1↑, FoxO3↓ (p<0.05 vs M)

Jang SO
2009 [15]
In vivoKoreaTotal n = 48
Control (24)
Sample (PR) (24)
Sciatic nerve-damaged rat model
(SD rat, 10 wk, M)
12 d(1) Muscle weight
(2) Cross-sectional area
(3) Bax, Bcl-2
PR: Puerariae Radix extract, 25.0mg/100g, 1/day for 12 d oral intake(1) Muscle weight: Control < Sample (p<0.05)
(2) CSA: Control < Sample (p<0.05)
(3) Bcl-2↑, Bax↓ (p<0.05)

Kim BH 2016 [16]In vivoKoreaTotal n = 30
Normal (10)
EtOH (10)
EtOH + DKEJ (10)
EtOH-treated rat model
(SD rat, 10 wk, M)
8 wk(1) Body weight
(2) Muscle weight
(3) Cross-sectional area
DKEJ: Daekumeumja
28.0mg/100g, 1/day for 8 wk
(1) Body weight: EtOH < EtOH + DKEJ (p<0.05)
(2) Muscle weight: EtOH < EtOH + DKEJ (p<0.05)
(3) CSA: EtOH < EtOH + DKEJ (p<0.05)

Cho JH
2008 [17]
In vivoKoreaTotal n = 36
Sham-OP (12)
Control (OP) (12)
OP + EC (12)
Sciatic nerve-damaged rat model
(SD rat, 10 wk, M)
12 d(1) Muscle weight
(2) Cross-sectional area
(3) Bax, Bcl-2
EC: Eucommiae Cortex extract 170mg/100g, 1/day for 12d(1) Muscle weight: Sham-OP > EC > Control (p<0.05)
(2) CSA: Sham-OP > EC > Control (p<0.05)
(3) Bax↓, Bcl-2↑

Lee CW 2007 [18]In vivoKoreaTotal n = 24
Sham (8)
Control (MCAO) (8)
Sample (MCAO + DR) (8)
Middle cerebral artery occlusion (MCAO) stroke rat model
(SD rat, 10 wk, M)
25 d(1) Muscle fiber type
(2) Cross-sectional area
(3) MHC-II
(4) MyoD expression
DR: Dipsaci Radix
184.4 mg/100g, 1/day for 25d, oral intake
(1) Muscle fiber type (type-I): Control < Sample (p<0.01)
(2) CSA: not significant
(3) MHC-II↓
(4) MyoD: Control < Sample (p<0.01)

Han SW
2008
[19]
In vivoKoreaTotal n = 18
Sham (6)
Control (6)
Sample (6)
MCA occlusion stroke rat model
(SD rat, 10 wk, M)
4 wk(1) Muscle fiber type
(2) Cross-sectional area
(3) MyoD expression
DR: Dipsaci Radix
184.4mg/100g, 1/day for 4 wk, oral intake
(1) Muscle fiber type: type-I ↑, type-II ↓ (p<0.05 vs. control)
(2) CSA: control < Sample (p<0.05)
(3) MyoD↑ (p<0.05 vs. control)

Kim BH 2017 [20]In vivoKoreaTotal n = 30
Normal (10)
EtOH (10)
EtOH + PR (10)
Alcohol-induced (EtOH) muscle atrophy rat model
(SD rat, 10 wk, M)
4 wk(1) Muscle weight
(2) Cross-sectional area
(3) Bcl-2, Bax
PR: Pueraria radix 4.6mg/100g, 1/day for 4 wk, oral intake(1) Muscle weight: EtOH + PR > EtOH (p<0.05)
(2) CSA: EtOH + PR > EtOH (p<0.05)
(3) Bcl-2↑, Bax↓ (p<0.05 vs. EtOH)

Soh KS 2009 [21]In vivoKoreaTotal n = 24
Normal (6)
Control (6)
HS (6)
HS + KS (6)
Hindlimb suspension rat model
(SD rat, 6 wk, M)
2 wk(1) Muscle weight
(2) IGF-1 protein
(3) Myogenin protein
(4) MyoD protein
KS: KangwhalSokdan-tang
1 mg/100g, 3 times/1day orally
(1) Muscle weight: HS < HS+KS (p<0.001)
(2) IGF-1: HS < HS+KS (p<0.05, in Type I)
(3) Myogenin: not significant
(4) MyoD: HS < HS+KS (p<0.05 in Type I)

Kim BH 2016 [22]In vivoKoreaTotal n = 30
Normal (10)
EtOH (10)
EtOH + SHSGS (10)
Alcohol-induced (EtOH) muscle atrophy rat model
(SD rat, 10 wk, M)
4 wk(1) Muscle weight
(2) CSA
(3) Apoptotic factor
SHSGS: Shihosogan-san
31.5 mg/100g, 1/day for 4 wk, orally
(1) Muscle weight: not significant
(2) CSA: not significant
(3) Bcl-2↑, Bax↓ (p<0.05 vs. EtOH)

Kim BH 2017 [23]In vivoKoreaTotal n = 20
Control (CON) (10)
DYJ (10)
Hindlimb suspension rat model
(SD rat, 10 wk, M)
2 wk(1) Muscle weight
(2) CSA
(3) Apoptotic factor
DYJ: Daeyeoung-jeon 259.6mg/100g/day orally
CON: Saline, orally
(1) Muscle weight: CON < DYJ (p<0.05)
(2) CSA: CON < DYJ (p<0.05)
(3) Bax↓, Bcl-2↑ (p<0.05 vs. CON)

Kim BH 2017 [24]In vivoKoreaTotal n = 20
CON (10)
DGBHT (10)
Hindlimb suspension rat model
(SD rat, 10 wk, M)
2 wk(1) Muscle weight
(2) CSA
(3) Malondialdehyde (MDA)
(4) Cu/Zn-SOD activation
DGBHT: Dangguibohyul-tang 236.7mg/100g/day orally
CON: Saline, orally
(1) Muscle weight: CON < DGBHT (p<0.05)
(2) CSA: CON < DGBHT (p<0.01)
(3) MDA: no significant difference
(4) Cu/Zn-SOD: CON < DGBHT (p<0.05)

Wang D 2017 [25]In vivoChinaTotal n = 30
CON (10)
JPYS (10)
Sham-OP (10)
5/6 nephrectomized rat model (SD rat, n r, M)6 wk(1) Renal function
(2) Muscle weight
(3) CSA
(4) Protein synthesis and protein degradation
(5) Ubiquitin-proteasome system and FoxO3a activation
(6) Mitochondrial biogenesis proteins
(7) Muscle autophagy/mitophagy pathway
(8) Mitochondrial dynamics
JPYS: Jian-Pi-Yi-Shen decoction, 10.89mg/kg/day orally(1) BUN, Creatinine: CON > JPYS (p<0.001)
(2) Muscle weight: CON < JPYS (p<0.05)
(3) CSA: CON < JPYS (p<0.05)
(4) Protein synthesis↑, degradation↓ (p<0.05 vs CON)
(5) Atrogin-1↓, MuRF-1↓, p-FoxO3a↑, FoxO3a↓ (p<0.05 vs. CON)
(6) Cox IV↑, NRF-1↑, PGC-1α↑ (p<0.05 vs. CON)
(7) LC3II/LC3I ratio↓, Beclin-1↓, P62↓, PINK1↓, Parkin protein level↓ (p<0.05 vs. CON)
(8) Fis1↓, Mfn2↑ (p<0.01 vs CON), Drp-1↓, OPA-1↑ (p<0.05 vs. CON)

Su Z 2017 [26]In vivoChinaTotal n = 36
Sham-OP (9)
Sham+LFES (9)
CKD (9)
CKD+LFES (9)
5/6 nephrectomized rat model (C57/BL6 mice, 2-4 mo, M)2 wk(1) Autophagosome-proteolysis pathwayLFES: positive point-GB34, negative point-ST36
20Hz, 1mA for 15min
(1) Bnip3↓, Beclin-1↓, LC3II/I ratio↓ (p<0.05 vs. CKD)

Zhou L 2018 [27]In vivoChinaTotal n = 56
Sham-OP (8)
Model (DSMA) (8)
CON-siRNA +BYHWT (8)
ANGPTL4-siRNA +BYHWT (8)
BYHWT low (8)
BYHWT moderate (8)
BYHWT high (8)
Denervated-dependent skeletal muscle atrophy (DSMA) rat model
(SD rat, 8-10 wk, M)
2 wk(1) ANGPTL4 in pathogenesis of DSMA (on Anti-inflammatory effect)
(2) Muscle cell apoptosis
(3) NF-кB and MURF1 expression
BYHWT: Buyang Huanwu Tang
(high: solution diluted 2X / moderate: 4X / low: 8X), 2ml every day, orally
Model: DSMA + saline
ANGPTL4: angiopoietin-like protein 4
(1) Inflammatory Cells: Model > ANGPLT4-siRNA+BYHWT > CON-siRNA+BYHWT (p<0.05)
(2) Cell apoptosis: Model > BYHWT-low > BYHWT-moderate > BYHWT-high (p<0.01 vs. Model)
(3) NF-кB p65, MURF1: Model > BYHWT-low > BYHWT-moderate > BYHWT-high (p<0.05 vs. Model)

Yu J 2017 [28]In vivoChinaTotal n = 54
NOR (6)
SNI 1wk, 2wk, 4wk, 6wk (6 each)
NOR+EA 4wk, 6wk (6 each)
SNI+EA 4wk, 6wk (6 each)
Penicillin injection-induced sciatic nerve injury (SNI) rat model
(SD rat, 7-9 wk, M)
2 wk/ 4 wk(1) Sciatic nerve functional indices (SFI)
(2) Muscle weight
(3) Muscle fibre CSA
(4) mRNA expression of agrin, AChR-ε and AChR-γ
EA: Electro-acupuncture at GB30 (positive) and ST36 (negative)
5Hz, 2mA for 30min
1 course: alternate days, three times a week for 2 weeks
2 course: alternate days, three times a week for 4 weeks
1w, 2w, 4w, 6w: euthanased at 1,2,4,6weeks
(1) SFI: SNI < SNI+EA (p<0.05)
(2) Muscle weight: SNI < SNI+EA (p<0.05)
(3) CSA: SNI < SNI+EA (p<0.05)
(4) agrin↑, AChR-ε↑, AChR-γ↓ (p<0.05 vs. SNI)

Zhang YH
2017 [29]
In vivoChinaTotal n = 72
SCI (18)
TANES (18)
EA (18)
Sham-OP (18)
Spinal cord transection surgery treated rat model (SD rat, n r, F)4 wk(1) Motor neurons of L3, L5
(2) Neurotransmitter synthetase (ChAT)
(3) Neurotrophin-3 (NT-3) expression
(4) Muscle weight
(5) CSA
TANES: Tail nerve electrical stimulation 2.5-8.0kHz(mid),
1-150Hz(low), 100mA, 20min 5times/week for 4weeks
EA: electroacupuncture, GV6, GV9, GV2, GV1, ST36, 60Hz for 1.05s and 2Hz for 2.85s, pulse width 0.5ms, 2min, every other day for 4weeks
SCI: spinal nerve injury
(1) Motor neuron L3: SCI < TANES, EA (p<0.05)
L5: SCI < TANES, EA (p<0.05)
(2) ChAT (choline acetyltransferase): SCI < TANES, EA (p<0.05)
(3) NT-3: SCI < TANES, EA (p<0.05)
(4) Muscle weight: SCI < TANES, EA (p<0.05)
(5) CSA: SCI < TANES, EA (p<0.05)

Zhou L 2017 [30]In vivoChinaTotal n = 60
Sham-OP (10)
Model (10)
BYHWT-low (10)
BYHWT-middle (10)
BYHWT-high (10)
MCB (10)
Peroneal nerve injury rat model (SD rat, n r, M)10d / 21d(1) NF-κB p65, MuRF1 gene expression in 10day
(2) NF-κB p65, MuRF1 gene expression in 21day
BYHWT: Buyang Huanwu Tang
(i) low: 3g/kg/day
(ii) middle: 6g/kg/day
(iii) high: 12g/kg/day
MCB: Mecobalamin 500μg/day
(1) NF-κB p65: Model > BYHWT-low > B-middle (p<0.05) > MCB > B-high (p<0.01 vs. model)
MuRF1: Model > BYHWT-low > B-middle (p<0.05) > B-high > MCB (p<0.01 vs. model)
(2) NF-κB p65: Model > BYHWT-low > B-middle (p<0.05) > MCB > B-high (p<0.01 vs. model)
MuRF1: Model > BYHWT-low > B-middle (p<0.05) > B-high > MCB (p<0.01 vs. model)

Cao R 2017 [31]In vivoChinaTotal n = 63
Sham-OP
Model
EA
groups divided into 7days, 14days, 21days each
Sciatic nerve injury rat model (SD rat, 2 mo, M)7d / 14d / 21d(1) Muscle cell apoptosis
(2) Apoptotic factor
EA: Electro-acupuncture at ST36 and BL57
5Hz, 1.5mA for 10min
once a day for 7d, 14d, 21d
(1) Cell apoptosis (7d, 14d, 21d): Model > EA (p<0.05)
(2) Bcl-2↑, Bax↓, Cyto-C↓, Caspase-3↓ in 14d, 21d (p<0.05 vs. Model)

n r: not reported.