Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011 (2011), Article ID 618692, 8 pages
http://dx.doi.org/10.4061/2011/618692
Research Article

Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification

1Laboratório de Biotecnologia Microbiana (LaBiM), Centro de Tecnologia, Instituto de Química, lab. 549-1, Universidade Federal do Rio de Janeiro, CEP 21945-970, Rio de Janeiro, RJ, Brazil
2Laboratório de Tecnologia Verde (GreenTec), Centro de Tecnologia, Escola de Química, lab. 211, Universidade Federal do Rio de Janeiro, CP. 68542, CEP 21945-970 Rio de Janeiro, RJ, Brazil

Received 20 July 2010; Revised 21 September 2010; Accepted 5 October 2010

Academic Editor: Sulaiman Al-Zuhair

Copyright © 2011 Elisa d'Avila Cavalcanti-Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Agarwal, “Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines,” Progress in Energy and Combustion Science, vol. 33, no. 3, pp. 233–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. G. Aranda, O. A. C. Antunes, D. M. G. Freire, R. C. A. Lago, E. D. C. Cavalcanti, and J. S. Sousa, “Produção de ácidos graxos catalisada por lipases não purificadas de sementes ou frutos vegetais para subseqüente esterificação por catálise ácida,” PI0603824-7, 2006.
  3. L. F. Sotoft, B.-G. Rong, K. V. Christensen, and B. Norddahl, “Process simulation and economical evaluation of enzymatic biodiesel production plant,” Bioresource Technology, vol. 101, no. 14, pp. 5266–5274, 2010. View at Publisher · View at Google Scholar
  4. Y. Zhang, M. A. Dubé, D. D. McLean, and M. Kates, “Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis,” Bioresource Technology, vol. 90, no. 3, pp. 229–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. G. Encarnação, Geração de biodiesel pelos processos de transesterificação e hidroesterificação—uma avaliação econômica, M.S. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2008.
  6. D. A. G. Aranda, J. A. De Goncalves, J. S. Peres et al., “The use of acids, niobium oxide, and zeolite catalysts for esterification reactions,” Journal of Physical Organic Chemistry, vol. 22, no. 7, pp. 709–716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Md. M.R. Talukder, J. C. Wu, N. M. Fen, and Y. L.S. Melissa, “Two-step lipase catalysis for production of biodiesel,” Biochemical Engineering Journal, vol. 49, no. 2, pp. 207–212, 2010. View at Publisher · View at Google Scholar
  8. E. Minami and S. Saka, “Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process,” Fuel, vol. 85, no. 17-18, pp. 2479–2483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. L. Lima, Produção de biodiesel a partir da hidroesterificação dos óleos dos óleos de mamona e soja, M.S. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2007.
  10. J. A. Gonçalves, L. L. L. Rocha, A. K. Domingos, R. G. Jordão, F. R. Abreu, and D. A. G. Aranda, “Análise de reatividade e modelagem empírica da esterificação de compostos modelos sobre ácido nióbico para produção de biodiesel,” in Proceedings of the 2nd Congresso da Rede Brasileira de Tecnologia de Biodiesel, Brasília, Brazil, 2007.
  11. J. S. de Sousa, E. d. Cavalcanti-Oliveira, D. A.G. Aranda, and D. M.G. Freire, “Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production,” Journal of Molecular Catalysis B, vol. 65, no. 1-4, pp. 133–137, 2010. View at Publisher · View at Google Scholar
  12. W. Du, W. Li, T. Sun, X. Chen, and D. Liu, “Perspectives for biotechnological production of biodiesel and impacts,” Applied Microbiology and Biotechnology, vol. 79, no. 3, pp. 331–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Szczesna Antczak, A. Kubiak, T. Antczak, and S. Bielecki, “Enzymatic biodiesel synthesis—key factors affecting efficiency of the process,” Renewable Energy, vol. 34, no. 5, pp. 1185–1194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Canakci and J. Van Gerpen, “Biodiesel production from oils and fats with high free fatty acids,” Transactions of the American Society of Agricultural Engineers, vol. 44, no. 6, pp. 1429–1436, 2001. View at Google Scholar · View at Scopus
  15. Md. M. R. Talukder, J. C. Wu, and L. P.-L. Chua, “Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification,” Energy and Fuels, vol. 24, no. 3, pp. 2016–2019, 2010. View at Publisher · View at Google Scholar
  16. http://www.novozymes.com/.
  17. M. L. M. Fernandes, N. Krieger, A. M. Baron, P. P. Zamora, L. P. Ramos, and D. A. Mitchell, “Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system,” Journal of Molecular Catalysis B, vol. 30, no. 1, pp. 43–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. E. Crooks, G. D. Rees, B. H. Robinson, M. Svensson, and G. R. Stephenson, “Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity,” Biotechnology and Bioengineering, vol. 48, no. 3, pp. 190–196, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Jurado, V. Bravo, J. Núñez-Olea et al., “Enzyme-based detergent formulas for fatty soils and hard surfaces in a continuous-flow device,” Journal of Surfactants and Detergents, vol. 9, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. H. Chew, L. S. Chua, K. K. Cheng, M. R. Sarmidi, R. A. Aziz, and C. T. Lee, “Kinetic study on the hydrolysis of palm olein using immobilized lipase,” Biochemical Engineering Journal, vol. 39, no. 3, pp. 516–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Alim, J.-H. Lee, C. C. Akoh et al., “Enzymatic transesterification of fractionated rice bran oil with conjugated linoleic acid: optimization by response surface methodology,” LWT, vol. 41, no. 5, pp. 764–770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Fernandez-Lafuente, “Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst,” Journal of Molecular Catalysis B, vol. 62, no. 3-4, pp. 197–212, 2010. View at Publisher · View at Google Scholar
  23. W. Li, W. Du, Q. Li, T. Sun, and D. Liu, “Study on acyl migration kinetics of partial glycerides: dependence on temperature and water activity,” Journal of Molecular Catalysis B, vol. 63, no. 1-2, pp. 17–22, 2010. View at Publisher · View at Google Scholar
  24. D.-C. Li, Y. I.-J. Yang, and C.-Y. Shen, “Protease production by the thermophilic fungus Thermomyces lanuginosus,” Mycological Research, vol. 101, no. 1, pp. 18–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Kumar and P. Palanivelu, “Purification and characterization of an extracellular polygalacturonase from the thermophilic fungus, Thermomyces lanuginosus,” World Journal of Microbiology and Biotechnology, vol. 15, no. 5, pp. 643–646, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Singh, P. Reddy, J. Haarhoff et al., “Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase,” Journal of Biotechnology, vol. 81, no. 2-3, pp. 119–128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. D. Nguyen, J. M. Rezessy-Szabó, M. Claeyssens, I. Stals, and Á. Hoschke, “Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626,” Enzyme and Microbial Technology, vol. 31, no. 3, pp. 345–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Gomes, S. R. De Souza, R. P. Grandi, and R. D. Silva, “Production of thermostable glucoamylase by newly isolated Aspergillus flavus a 1.1 and Thermomyces lanuginosus a 13.37,” Brazilian Journal of Microbiology, vol. 36, no. 1, pp. 75–82, 2005. View at Google Scholar · View at Scopus
  29. L. Freitas, T. Bueno, V. H. Perez, J. C. Santos, and H. F. De Castro, “Enzymatic hydrolysis of soybean oil using lipase from different sources to yield concentrated of polyunsaturated fatty acids,” World Journal of Microbiology and Biotechnology, vol. 23, no. 12, pp. 1725–1731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. K. Park, G. M. Pastore, and M. M. Almeida, “Hydrolysis of soybean oil by a combined lipase system,” Journal of the American Oil Chemists' Society, vol. 65, pp. 252–254, 1988. View at Google Scholar
  31. N. G. Edwinoliver, K. Thirunavukarasu, S. Purushothaman, C. Rose, M. K. Gowthaman, and N. R. Kamtni, “Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof,” Journal of Agricultural and Food Chemistry, vol. 57, no. 22, pp. 10658–10663, 2009. View at Publisher · View at Google Scholar
  32. I. M. Noor, M. Hasan, and K. B. Ramachandran, “Effect of operating variables on the hydrolysis rate of palm oil by lipase,” Process Biochemistry, vol. 39, no. 1, pp. 13–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Goswami, J. K. Basu, and S. De, “Optimization of process variables in castor oil hydrolysis by Candida rugosa lipase with buffer as dispersion medium,” Biotechnology and Bioprocess Engineering, vol. 14, no. 2, pp. 220–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Huang, Y. Liu, Z. Song, Q. Jin, Y. Liu, and X. Wang, “Kinetic study on the effect of ultrasound on lipase-catalyzed hydrolysis of soy oil: study of the interfacial area and the initial rates,” Ultrasonics Sonochemistry, vol. 17, no. 3, pp. 521–525, 2010. View at Publisher · View at Google Scholar
  35. Y. Liu, Q. Jin, L. Shan, Y. Liu, W. Shen, and X. Wang, “The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system,” Ultrasonics Sonochemistry, vol. 15, no. 4, pp. 402–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Primožič, M. Habulin, and Ž. Knez, “Modeling of kinetics for the enzymatic hydrolysis of sunflower oil in a high-pressure reactor,” JAOCS, Journal of the American Oil Chemists' Society, vol. 82, no. 8, pp. 543–547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Demirbas, “Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods,” Progress in Energy and Combustion Science, vol. 31, no. 5-6, pp. 466–487, 2005. View at Publisher · View at Google Scholar · View at Scopus