Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011, Article ID 873230, 12 pages
http://dx.doi.org/10.4061/2011/873230
Review Article

Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina

Received 21 December 2010; Accepted 7 February 2011

Academic Editor: Claudio Alejandro Pereira

Copyright © 2011 Karina E. J. Tripodi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Barrett, R. J. S. Burchmore, A. Stich et al., “The trypanosomiases,” Lancet, vol. 362, no. 9394, pp. 1469–1480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Bringaud, L. Rivière, and V. Coustou, “Energy metabolism of trypanosomatids: adaptation to available carbon sources,” Molecular and Biochemical Parasitology, vol. 149, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Kořený, J. Lukeš, and M. Oborník, “Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all?” International Journal for Parasitology, vol. 40, no. 2, pp. 149–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Furuyama, K. Kaneko, and P. D. Vargas, “Heme as a magnificient molecule with multiple missions: heme determines its own fate and governs cellular homeostasis,” Tohoku Journal of Experimental Medicine, vol. 213, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. W. Ryter and R. M. Tyrrell, “The heme synthesis and degradation pathways: role in oxidant sensitivity: heme oxygenase has both pro- and antioxidant properties,” Free Radical Biology and Medicine, vol. 28, no. 2, pp. 289–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. T. Moraes, F. Diaz, and A. Barrientos, “Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals,” Biochimica et Biophysica Acta, vol. 1659, no. 2-3, pp. 153–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. I. U. Heinemann, M. Jahn, and D. Jahn, “The biochemistry of heme biosynthesis,” Archives of Biochemistry and Biophysics, vol. 474, no. 2, pp. 238–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Awa, N. Iwai, T. Ueda et al., “Isolation of a new antibiotic, alaremycin, structurally related to 5-aminolevulinic acid from Streptomyces sp. A012304,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 9, pp. 1721–1725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Padmanaban and P. N. Rangarajan, “Heme metabolism of plasmodium is a major antimalarial target,” Biochemical and Biophysical Research Communications, vol. 268, no. 3, pp. 665–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. U. Rao, L. K. Carta, E. Lesuisse, and I. Hamza, “Lack of heme synthesis in a free-living eukaryote,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4270–4275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Padmanaban, V. A. Nagaraj, and P. N. Rangarajan, “An alternative model for heme biosynthesis in the malarial parasite,” Trends in Biochemical Sciences, vol. 32, no. 10, pp. 443–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. A. E. Dailey, Biosynthesis of Heme and Chlorophylls, McGraw-Hill, New York, NY, USA, 1990.
  13. A. E. Medlockm and H. A. Dailey, “Tetrapyrroles,” in Tetrapyrroles: Birth, Life and Death, M. J. Warren and A. G. Smith, Eds., pp. 116–127, Landes Bioscience, Austin, Tex, USA, 2007. View at Google Scholar
  14. S. Sato, B. Clough, L. Coates, and R. J. M. Wilson, “Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum,” Protist, vol. 155, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Nagaraj, D. Prasad, P. N. Rangarajan, and G. Padmanaban, “Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 168, no. 1, pp. 109–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Ponka, “Cell biology of heme,” American Journal of the Medical Sciences, vol. 318, no. 4, pp. 241–256, 1999. View at Google Scholar · View at Scopus
  17. C. Buchensky, P. Almirón, B. S. Mantilla, A. M. Silber, and J. A. Cricco, “The Trypanosoma cruzi proteins TcCox10 and TcCox15 catalyze the formation of heme A in the yeast Saccharomyces cerevisiae,” FEMS Microbiology Letters, vol. 312, no. 2, pp. 133–141, 2010. View at Publisher · View at Google Scholar
  18. T. M. Embley, M. Van Der Giezen, D. S. Horner et al., “Mitochondria and hydrogenosomes are two forms of the same fundamental organelle,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1429, pp. 191–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. M. Embley, “Multiple secondary origins of the anaerobic lifestyle in eukaryotes,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1470, pp. 1055–1067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. R. C. Braz, H. S. L. Coelho, H. Masuda, and P. L. Oliveira, “A missing metabolic pathway in the cattle tick Boophilus microplus,” Current Biology, vol. 9, no. 13, pp. 703–706, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Ghedin, S. Wang, D. Spiro et al., “Draft genome of the filarial nematode parasite Brugia malayi,” Science, vol. 317, no. 5845, pp. 1756–1760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. A. Lara, U. Lins, G. Paiva-Silva et al., “A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: Aggregation inside a specialized organelle, the hemosome,” Journal of Experimental Biology, vol. 206, no. 10, pp. 1707–1715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. A. Lara, U. Lins, G. H. Bechara, and P. L. Oliveira, “Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus,” Journal of Experimental Biology, vol. 208, no. 16, pp. 3093–3101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. A. Salzman, A. M. Stella, E. A. Wider de Xifra, A. M. D. C. Batlle, R. Docampo, and A. O. M. Stoppani, “Porphyrin biosynthesis in parasitic hemoflagellates: Functional and defective enzymes in Trypanosoma cruzi,” Comparative Biochemistry and Physiology, Part B, vol. 72, no. 4, pp. 663–667, 1982. View at Google Scholar · View at Scopus
  25. M. E. Lombardo, L. S. Araujo, and A. Batlle, “5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 8, pp. 1263–1271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Berriman, E. Ghedin, C. Hertz-Fowler et al., “The genome of the African trypanosome Trypanosoma brucei,” Science, vol. 309, no. 5733, pp. 416–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu et al., “The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease,” Science, vol. 309, no. 5733, pp. 409–415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Aslett, C. Aurrecoechea, M. Berriman et al., “TriTrypDB: a functional genomic resource for the Trypanosomatidae,” Nucleic Acids Research, vol. 38, no. 1, pp. D457–D462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. P. Chang and W. Trager, “Nutritional significance of symbiotic bacteria in two species of hemoflagellates,” Science, vol. 183, no. 4124, pp. 531–532, 1974. View at Google Scholar · View at Scopus
  30. K. P. Chang, C. S. Chang, and S. Sassa, “Heme biosynthesis in bacterium protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 2979–2983, 1975. View at Google Scholar · View at Scopus
  31. J. F. Sah, H. Ito, B. K. Kolli, D. A. Peterson, S. Sassa, and K. P. Chang, “Genetic rescue of Leishmania deficiency in porphyrin biosynthesis creates mutants suitable for analysis of cellular events in uroporphyria and for photodynamic therapy,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14902–14909, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. O. E. Akilov, S. Kosaka, K. O'riordan, and T. Hasan, “Parasiticidal effect of δ-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells,” Experimental Dermatology, vol. 16, no. 8, pp. 651–660, 2007. View at Publisher · View at Google Scholar
  33. S. Dutta, K. Furuyama, S. Sassa, and K.-P. Chang, “Leishmania spp.: delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway,” Experimental Parasitology, vol. 118, no. 4, pp. 629–636, 2008. View at Publisher · View at Google Scholar
  34. A. C. Ivens, C. S. Peacock, E. A. Worthey et al., “The genome of the kinetoplastid parasite, Leishmania major,” Science, vol. 309, no. 5733, pp. 436–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Severance and I. Hamza, “Trafficking of heme and porphyrins in metazoa,” Chemical Reviews, vol. 109, no. 10, pp. 4596–4616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. D. Uttaro, “Biosynthesis of polyunsaturated fatty acids in lower eukaryotes,” IUBMB Life, vol. 58, no. 10, pp. 563–571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. B. M. Joubert, L. N. Nguyen, S. P. T. Matsuda, and F. S. Buckner, “Cloning and functional characterization of a Trypanosoma brucei lanosterol 14α-demethylase gene,” Molecular and Biochemical Parasitology, vol. 117, no. 1, pp. 115–117, 2001. View at Google Scholar · View at Scopus
  38. F. S. Buckner, B. M. Joubert, S. M. Boyle, R. T. Eastman, C. L. M. J. Verlinde, and S. P. T. Matsuda, “Cloning and analysis of Trypanosoma cruzi lanosterol 14α-demethylase,” Molecular and Biochemical Parasitology, vol. 132, no. 2, pp. 75–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. K. E. J. Tripodi, L. V. Buttigliero, S. G. Altabe, and A. D. Uttaro, “Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan,” FEBS Journal, vol. 273, no. 2, pp. 271–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. V. I. Livore, K. E. J. Tripodi, and A. D. Uttaro, “Elongation of polyunsaturated fatty acids in trypanosomatids,” FEBS Journal, vol. 274, no. 1, pp. 264–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. B. Schenkman and I. Jansson, “The many roles of cytochrome b,” Pharmacology and Therapeutics, vol. 97, no. 2, pp. 139–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Thiede, J. Ozols, and P. Strittmatter, “Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13230–13235, 1986. View at Google Scholar · View at Scopus
  43. J. A. Napier, O. Sayanova, P. Sperling, and E. Heinz, “A growing family of cytochrome b-domain fusion proteins,” Trends in Plant Science, vol. 4, no. 1, pp. 2–4, 1999. View at Google Scholar · View at Scopus
  44. A. G. Mitchell and C. E. Martin, “A novel cytochrome b-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae Δ-9 fatty acid desaturase,” Journal of Biological Chemistry, vol. 270, no. 50, pp. 29766–29772, 1995. View at Publisher · View at Google Scholar · View at Scopus
  45. J. A. Napier, O. Sayanova, A. K. Stobart, and P. R. Shewry, “A new class of cytochrome b5 fusion proteins,” The Biochemical Journal, vol. 328, pp. 717–718, 1997. View at Google Scholar · View at Scopus
  46. W. C. Man, M. Miyazaki, K. Chu, and J. M. Ntambi, “Membrane topology of mouse stearoyl-CoA desaturase,” Journal of Biological Chemistry, vol. 281, no. 2, pp. 1251–1260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. R. Diaz, M. C. Mansilla, A. J. Vila, and D. De Mendoza, “Membrane topology of the acyl-lipid desaturase from Bacillus subtilis,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48099–48106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Alloatti and A. D. Uttaro, “Highly specific methyl-end fatty-acid desaturases of trypanosomatids,” Molecular and Biochemical Parasitology, vol. 175, no. 2, pp. 126–132, 2011. View at Publisher · View at Google Scholar
  49. A. Alloatti, S. Gupta, M. Gualdrón-López et al., “Genetic and chemical evaluation of Trypanosoma brucei oleate desaturase as a candidate drug target,” PLoS One, vol. 5, no. 12, Article ID e14239, 2010. View at Publisher · View at Google Scholar
  50. C. K. Chen, S. S. F. Leung, C. Guilbert, M. P. Jacobson, J. H. Mckerrow, and L. M. Podust, “Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole,” PLoS Neglected Tropical Diseases, vol. 4, no. 4, article e651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. M. Podust, J. P. Von Kries, A. N. Eddine et al., “Small-molecule scaffolds for CYP51 inhibitors identified by high-throughput screening and defined by X-ray crystallography,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 11, pp. 3915–3923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. W. de Souza, M. Attias, and J. C. F. Rodrigues, “Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida),” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2069–2080, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Stroebel, Y. Choquet, J. L. Popot, and D. Picot, “An atypical haem in the cytochrome bf complex,” Nature, vol. 426, no. 6965, pp. 413–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Yu and N. E. Le Brun, “Studies of the cytochrome subunits of menaquinone: cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit,” Journal of Biological Chemistry, vol. 273, no. 15, pp. 8860–8866, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. J. W. Priest and S. L. Hajduk, “Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1,” Journal of Biological Chemistry, vol. 267, no. 28, pp. 20188–20195, 1992. View at Google Scholar · View at Scopus
  56. J. W. A. Allen, M. L. Ginger, and S. J. Ferguson, “Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway,” Biochemical Journal, vol. 383, no. 3, pp. 537–542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. G. Kranz, C. Richard-Fogal, J. S. Taylor, and E. R. Frawley, “Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control,” Microbiology and Molecular Biology Reviews, vol. 73, no. 3, pp. 510–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Stevens, O. Daltrop, J. W. A. Allen, and S. J. Ferguson, “C-type cytochrome formation: chemical and biological enigmas,” Accounts of Chemical Research, vol. 37, no. 12, pp. 999–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Thöny-Meyer, “Biogenesis of respiratory cytochromes in bacteria,” Microbiology and Molecular Biology Reviews, vol. 61, no. 3, pp. 337–376, 1997. View at Google Scholar · View at Scopus
  60. O. Christensen, E. M. Harvat, L. Thöny-Meyer, S. J. Ferguson, and J. M. Stevens, “Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE,” FEBS Journal, vol. 274, no. 9, pp. 2322–2332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. E. Feissner, C. L. Richard-Fogal, E. R. Frawley, and R. G. Kranz, “ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis,” Molecular Microbiology, vol. 61, no. 1, pp. 219–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. S. J. Ferguson, J. M. Stevens, J. W. A. Allen, and I. B. Robertson, “Cytochrome c assembly: a tale of ever increasing variation and mystery?” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 980–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. M. Embley and W. Martin, “Eukaryotic evolution, changes and challenges,” Nature, vol. 440, no. 7084, pp. 623–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. E. Feissner, C. S. Beckett, J. A. Loughman, and R. G. Kranz, “Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis,” Journal of Bacteriology, vol. 187, no. 12, pp. 3941–3949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. D. G. Bernard, S. T. Gabilly, G. Dujardin, S. Merchant, and P. P. Hamel, “Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 49732–49742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Kurisu, H. Zhang, J. L. Smith, and W. A. Cramer, “Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity,” Science, vol. 302, no. 5647, pp. 1009–1014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. J. W. A. Allen, A. P. Jackson, D. J. Rigden, A. C. Willis, S. J. Ferguson, and M. L. Ginger, “Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?” FEBS Journal, vol. 275, no. 10, pp. 2385–2402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Fülöp, K. A. Sam, S. J. Ferguson, M. L. Ginger, and J. W. A. Allen, “Structure of a trypanosomatid mitochondrial cytochrome c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase,” FEBS Journal, vol. 276, no. 10, pp. 2822–2832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. H. Barros and A. Tzagoloff, “Regulation of the heme A biosynthetic pathway in Saccharomyces cerevisiae,” FEBS Letters, vol. 516, no. 1–3, pp. 119–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. D. M. Glerum and A. Tzagoloff, “Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, pp. 8452–8456, 1994. View at Google Scholar · View at Scopus
  71. D. M. Glerum, I. Muroff, C. Jin, and A. Tzagoloff, “COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 19088–19094, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Barrientos, M. H. Barros, I. Valnot, A. Rötig, P. Rustin, and A. Tzagoloff, “Cytochrome oxidase in health and disease,” Gene, vol. 286, no. 1, pp. 53–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Antonicka, S. C. Leary, G. H. Guercin et al., “Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency,” Human Molecular Genetics, vol. 12, no. 20, pp. 2693–2702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. B. E. Dwyer, M. L. Stone, N. Gorman et al., “Heme-a, the heme prosthetic group of cytochrome c oxidase, is increased in Alzheimer's disease,” Neuroscience Letters, vol. 461, no. 3, pp. 302–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Vitali, E. Venturelli, D. Galimberti, L. Benerini Gatta, E. Scarpini, and D. Finazzi, “Analysis of the genes coding for subunit 10 and 15 of cytochrome c oxidase in Alzheimer's disease,” Journal of Neural Transmission, vol. 116, no. 12, pp. 1635–1641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Chaudhuri, R. D. Ott, and G. C. Hill, “Trypanosome alternative oxidase: from molecule to function,” Trends in Parasitology, vol. 22, no. 10, pp. 484–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. F. R. Opperdoes and P. A. M. Michels, “Complex I of Trypanosomatidae: does it exist?” Trends in Parasitology, vol. 24, no. 7, pp. 310–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. J. César Carranza, A. J. Kowaltowski, M. A. G. Mendonça, T. C. De Oliveira, F. R. Gadelha, and B. Zingales, “Mitochondrial bioenergetics and redox state are unaltered in trypanosoma cruzi isolates with compromised mitochondrial complex i subunit genes,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 3, pp. 299–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Affranchino, M. N. Schwarcz De Tarlovsky, and A. O. M. Stopanni, “Terminal oxidases in the trypanosomatid Trypanosoma cruzi,” Comparative Biochemistry and Physiology, Part B, vol. 85, no. 2, pp. 381–388, 1986. View at Google Scholar · View at Scopus
  80. M. Ferella, D. Nilsson, H. Darban et al., “Proteomics in Trypanosoma cruzi—localization of novel proteins to various organelles,” Proteomics, vol. 8, no. 13, pp. 2735–2749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Parodi-Talice, V. Monteiro-Goes, N. Arrambide et al., “Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis,” Journal of Mass Spectrometry, vol. 42, no. 11, pp. 1422–1432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Häusler, Y. D. Stierhof, J. Blattner, and C. Clayton, “Consevation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas,” European Journal of Cell Biology, vol. 73, no. 3, pp. 240–251, 1997. View at Google Scholar · View at Scopus