Geofluids
 Journal metrics
Acceptance rate47%
Submission to final decision86 days
Acceptance to publication41 days
CiteScore2.100
Impact Factor1.534
 Submit

Compaction of Hyaloclastite from the Active Geothermal System at Krafla Volcano, Iceland

Read the full article

 Journal profile

Geofluids publishes research relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust.

 Editor spotlight

Geofluids maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors expert and up-to-date in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Numerical Simulation on Heat Transfer Characteristics of Water Flowing through the Fracture of High-Temperature Rock

Deep geothermal resources are becoming an increasingly important energy source worldwide. To achieve the optimal efficiency of this resource, the heat transfer characteristics between flowing water and rock need to be further studied. Using the stereotopometric scanning system 3D CaMega, the fracture geometry data of five cuboid granite rocks were obtained to determine the effects of fracture roughness on the heat transferability of rock. A 3-D model was built based upon the scanned geometry data to assess the effects of rock temperature, water velocity, and roughness, and aperture size of fracture surface on the heat transfer coefficient. The simulation tests show that water velocity has the most noticeable effect, followed by aperture size and rock roughness. On the other hand, the initial rock temperature has the least influence. A new heat transfer coefficient was proposed considering aperture size, water flow velocity, and rock fracture roughness. The calculated values of Reynolds, Prandtl, and Nusselt numbers obtained using this coefficient are in good agreement with the numerical simulation results. This study provides a reference for enhancing the heat transfer coefficient to benefit the exploitation of heat energy of hot dry rock.

Review Article

Stimulation Techniques of Coalbed Methane Reservoirs

Coalbed methane (CBM) plays an important role in securing world energy supply and transiting electricity generation from fossil fuel to renewables. CBM reservoirs are generally very tight and require effective stimulation to achieve economic extraction. In recent years, an increasing number of coal seam stimulation techniques were developed, but selecting the most suitable stimulation technique for a particular CBM reservoir condition is becoming increasingly challenging. Therefore, it is deemed very important to compare the effectiveness of different stimulation techniques in a meaningful way to guide future research directions in this area. In this paper, the stimulation techniques were firstly classified into different categories according to the stimulation mechanisms. Then, the associated principles, the history of advances, and challenges of different stimulation techniques were comprehensively reviewed. Two indexes were proposed to compare the stimulation effectiveness at the laboratory and field scales, respectively. Finally, the comparison and evaluation of each stimulation technique in respect to the stimulation effectiveness, influence range, duration, and environment were conducted in detail; the cryogenic liquid nitrogen stimulation technique receives the highest total score among the discussed laboratory-scale stimulation techniques. Hydraulic fracturing and gas injection stimulation techniques gain the highest total score among key field-scale stimulation techniques. Considering the time required for each stimulation method to take effect, high-voltage electric fracturing may have a greater potential in the future. This work is expected to help better select the optimal stimulation technique for reservoir specific conditions.

Research Article

A Numerical Study on Gas Flow through Anisotropic Sierpinski Carpet with Slippage Effect

A pore-scale model has been developed to study the gas flow through multiscale porous media based on a two-dimensional self-similar Sierpinski carpet. The permeability tensor with slippage effect is proposed, and the effects of complex configurations on gas permeability have been discussed. The present fractal model has been validated by comparison with theoretical models and available experimental data. The numerical results show that the flow field and permeability of the anisotropic Sierpinski model are different from that of the isotropic model, and the anisotropy of porous media can enhance gas permeability. The gas permeability of porous media increases with the increment of porosity, while it decreases with increased pore fractal dimension under fixed porosity. Furthermore, the gas slippage effect strengthens as the pore fractal dimension decreases. However, the relationship between the gas slippage effect and porosity is a nonmonotonic decreasing function because reduced pore size and enhanced flow resistance may be simultaneously involved with decreasing porosity. The proposed pore-scale fractal model can present insights on characterizing complex and multiscale structures of porous media and understanding gas flow mechanisms. The numerical results may provide useful guidelines for the applications of porous materials in oil and gas engineering, hydraulic engineering, chemical engineering, thermal power engineering, food engineering, etc.

Research Article

Characteristics of an Altered Diabase Dike in a Coal Seam: A Case Study from the Datong Coalfield, Shanxi, China

Carboniferous–Permian coal seams in the Datong coalfield are intruded by Mesozoic magmatic dikes and sills. Our observations indicate that these dikes and sills have been seriously altered and have lost their original characteristics. Although this phenomenon has been mentioned in some studies, there is a lack of detailed research on the alteration mechanism. To fill this research gap, six dike samples were collected in this study to analyze their alteration characteristics and mechanisms. Petrographic analysis, scanning electron microscopy, and X-ray diffraction were used to determine the mineralogy of the altered igneous samples. The results suggest that the mineral alteration is associated with severe carbonation and clavization. The carbonation of mafic minerals is due to the release of CO2 generated from the coking of high volatile bituminous coals that may have occurred during the intrusive event. However, labradorite did not react with CO2. The water activity in the coal seam was enhanced by the dikes, and mafic minerals were converted into mixtures of chlorite and smectite group minerals. The water activity is especially high at the edges of the dike. Albite and clay minerals were formed due to the albitization of labradorite. Based on these effects, the dike can be divided into weak alteration, carbonation, and clavization bands. The alteration processes in the coal seam are described in detail in this work, and potential formation mechanisms are suggested.

Research Article

Model Experimental Study on the Seepage and Failure Features of Tunnel under Wetting-Drying Alternation with Increasing Water Pressure

Wetting-drying alternation caused by seasonal rainfall and water fluctuation has a negative effect on the rock mass. Model experiments were conducted in this paper to investigate the role of wetting-drying alternation on the seepage and failure features of a tunnel. Water-bearing structure was located in the lateral position of tunnel. The stratum thickness between the tunnel and water-bearing structure was ranged from 20 to 100 mm. The results showed that, with an increase in the wetting-drying alternation number, the pore water pressure increases gradually. The critical water pressure also increases gradually with the increasing thickness of water-resisting stratum. With the increase of the stratum thickness, the permeable area is gradually widened and the water storage capacity becomes stronger. The failure mode of water-resisting stratum under geostress and water pressure can be summarized as two types: fracture failure (thickness of 20 mm) and slippage failure (thickness between 40 and 100 mm), respectively.

Research Article

Visualization of Gas Diffusion-Sorption in Coal: A Study Based on Synchrotron Radiation Nano-CT

Gas diffusion-sorption is a critical step in coalbed methane (CBM) exploitation and carbon dioxide sequestration. Because of the particularity of gas physical properties, it is difficult to visualize the gas diffusion-sorption process in coal by experimental methods. Due to the limitation of experimental approaches to image the three-dimensional coal pore structure, it is impossible to obtain the three-dimensional pore structure images of coal. As a result, the visualization of gas diffusion-sorption in coal pore structure by numerical ways is impossible. In this study, gas diffusion coefficients were firstly estimated by experiments. Then, a gas diffusion-sorption coupled model was developed which can be applied to the nanoscale geometry imaged by synchrotron radiation nano-CT. The dynamic process of gas diffusion and ad-/desorption in the nanoscale microstructure of coal was visualized by the developed gas diffusion-adsorption coupled model and the numerical simulation based on MATLAB. The simulation results show a good agreement with the experimental results. The gas diffusion-sorption coupled model and numerical method can help to investigate the effect of microstructure on gas diffusion and ad-/desorption and provides a possibility to investigate the multiscale gas transportation and adsorption in coal pore-fracture system.

Geofluids
 Journal metrics
Acceptance rate47%
Submission to final decision86 days
Acceptance to publication41 days
CiteScore2.100
Impact Factor1.534
 Submit
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.