Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2017, Article ID 1925817, 25 pages
https://doi.org/10.1155/2017/1925817
Research Article

Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions

Université de Lorraine, CNRS, CREGU, GeoRessources, 54506 Vandœuvre-lès-Nancy, France

Correspondence should be addressed to Matthieu Harlaux; hc.eginu@xualrah.ueihttam

Received 15 August 2017; Accepted 7 November 2017; Published 26 December 2017

Academic Editor: Xing Ding

Copyright © 2017 Matthieu Harlaux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Pollard, “A special issue devoted to the geology of rare metal deposits; geology of rare metal deposits; an introduction and overview,” Economic Geology, vol. 90, no. 3, pp. 489–494, 1995. View at Publisher · View at Google Scholar
  2. R. L. Linnen, M. Van Lichtervelde, and P. Černý, “Granitic pegmatites as sources of strategic metals,” Elements, vol. 8, no. 4, pp. 275–280, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Linnen and M. Cuney, “Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization,” in Rare-Element Geochemistry and Mineral Deposits Short Course Notes, R. L. Linnen and I. M. Samson, Eds., vol. 17, pp. 45–68, Geological Association of Canada, Canada, 2005. View at Google Scholar
  4. P. Černý and T. S. Ercit, “The classification of granitic pegmatites revisited,” The Canadian Mineralogist, vol. 43, no. 6, pp. 2005–2026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Černý, P. L. Blevin, M. Cuney, and D. London, “Granite-Related Ore Deposits,” Economic Geology 100 th anniversary volume, vol. 107, no. 2, pp. 383-384, 2005. View at Publisher · View at Google Scholar
  6. Y. Chen, A. H. Clark, E. Farrar, H. A. H. P. Wasteneys, M. J. Hodgson, and A. V. Bromley, “Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England,” Journal of the Geological Society, vol. 150, no. 6, pp. 1183–1191, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Marignac and M. Cuney, “Ore deposits of the French Massif Central: Insight into the metallogenesis of the Variscan collision belt,” Mineralium Deposita, vol. 34, no. 5-6, pp. 472–504, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Cuney, P. Alexandrov, C. L. C. De Veslud et al., “The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: The case of the Limousin area (Massif Central, France),” Geological Society of London, Special Publication, vol. 204, pp. 213–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Melleton, E. Gloaguen, D. Frei, M. Novák, and K. Breiter, “How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic?” The Canadian Mineralogist, vol. 50, no. 6, pp. 1751–1773, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Melleton, E. Gloaguen, and D. Frei, “Rare-elements (Li-Be-Ta-Sn-Nb) magmatism in the European Variscan Belt, a review,” in Proceedings of the 13th Biennial SGA Meeting, A. S. André-Mayer, M. Cathelineau, P. Muchez, E. Pirard, and S. Sindern, Eds., vol. 2, pp. 24–27, France, 2015.
  11. M. Cuney and A. Autran, “Objectifs généraux du projet GPF Echassières n°1 et résultats essentiels acquis par le forage de 900 m sur le granite albitique à topaze-lépidolite de Beauvoir,” in Géologie profonde de la France, Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 7–24, Géologie de la France, 1987. View at Google Scholar
  12. M. Cuney, C. Marignac, and A. Weisbrod, “The Beauvoir topaz-lepidolite albite granite (Massif Central, France) : the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization,” Economic Geology, vol. 87, no. 7, pp. 1766–1794, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Raimbault, M. Cuney, C. Azencott, J. L. Duthou, and J. L. Joron, “Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central,” Economic Geology, vol. 90, no. 3, pp. 548–576, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Breiter, A. Müller, J. Leichmann, and A. Gabašová, “Textural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic,” Lithos, vol. 80, no. 1-4, pp. 323–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Johan and V. Johan, “Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: Indicators of petrogenetic evolution,” Mineralogy and Petrology, vol. 83, no. 1-2, pp. 113–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Webster, J. R. Holloway, and R. L. Hervig, “Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt,” Economic Geology, vol. 84, no. 1, pp. 116–134, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. R. L. Linnen, “The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: Constraints for mineralization in rare metal granites and pegmatites,” Economic Geology, vol. 93, no. 7, pp. 1013–1025, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. I. V. Veksler, “Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies,” Chemical Geology, vol. 210, no. 1-4, pp. 7–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. I. V. Veksler, “Element enrichment and fractionation by magmatic aqueous fluids: experimental constraints on melt-fluid immiscibility and element partitioning,” in Rare-Element Geochemistry and Mineral Deposits Short Course Notes, R. L. Linnen and I. M. Samson, Eds., vol. 17, pp. 69–85, Geological Association of Canada, Canada, 2005. View at Google Scholar
  20. R. Thomas, H.-J. Förster, and W. Heinrich, “The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study,” Contributions to Mineralogy and Petrology, vol. 144, no. 4, pp. 457–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Thomas, H.-J. Förster, K. Rickers, and J. D. Webster, “Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study,” Contributions to Mineralogy and Petrology, vol. 148, no. 5, pp. 582–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Webster, R. Thomas, H.-J. Förster, R. Seltmann, and C. Tappen, “Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany,” Mineralium Deposita, vol. 39, no. 4, pp. 452–472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. E. V. Badanina, I. V. Veksler, R. Thomas, L. F. Syritso, and R. B. Trumbull, “Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia),” Chemical Geology, vol. 210, no. 1-4, pp. 113–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Rickers, R. Thomas, and W. Heinrich, “Trace-element analysis of individual synthetic and natural fluid inclusions with synchrotron radiation XRF using Monte Carlo simulations for quantification,” European Journal of Mineralogy, vol. 16, no. 1, pp. 23–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Rickers, R. Thomas, and W. Heinrich, “The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions,” Mineralium Deposita, vol. 41, no. 3, pp. 229–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Y. Borisova, R. Thomas, S. Salvi, F. Candaudap, A. Lanzanova, and J. Chmeleff, “Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: New evidence for melt-melt-fluid immiscibility,” Mineralogical Magazine, vol. 76, no. 1, pp. 91–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Audétat, D. Günther, and C. A. Heinrich, “Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized mole granite (Australia),” Geochimica et Cosmochimica Acta, vol. 64, no. 19, pp. 3373–3393, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Audétat, D. Güther, and C. A. Heinrich, “Causes for Large-Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia,” Economic Geology, vol. 95, no. 8, pp. 1563–1581, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Fabre, MC. Boiron, C. Marignac, and M. Aïssa, “Li-F-rich magmatic fluids exsolved from rare metal granites: the example of the Beauvoir granite (French Massif Central); a microthermometric and LIBS study. XVI ECROFI abstract,” Porto, vol. 7, pp. 145–147, 2001. View at Google Scholar
  30. M. Faure, J.-M. Lardeaux, and P. Ledru, “A review of the pre-Permian geology of the Variscan French Massif Central,” Comptes Rendus — Geoscience, vol. 341, no. 2-3, pp. 202–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. Duthou, J. M. Cantagrel, J. Didier, and Y. Vialette, “Palaeozoic granitoids from the French Massif Central: age and origin studied by 87Rb-87Sr system,” Physics of the Earth and Planetary Interiors, vol. 35, no. 1-3, pp. 131–144, 1984. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Cartannaz, P. Rolin, A. Cocherie et al., “Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central,” International Journal of Earth Sciences, vol. 96, no. 2, pp. 271–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Pin, “Sr-Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central,” in Enclaves and granite petrology, J. Didier and B. Barbarin, Eds., vol. 13, pp. 333–343, Elsevier, France, 1991. View at Google Scholar
  34. M. Faure, J. Grolier, and J. Pons, “Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central),” Geologische Rundschau, vol. 82, no. 3, pp. 461–474, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Schulz, “EMP-monazite age controls on P-T paths of garnet metapelites in the Variscan inverted metamorphic sequence of la Sioule, French Massif Central,” Bulletin de la Société Géographique de France, vol. 180, no. 3, pp. 271–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Do Couto, M. Faure, R. Augier et al., “Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central,” International Journal of Earth Sciences, vol. 105, no. 2, pp. 557–579, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Vigneresse, “Organisation tridimensionnelle du massif d’Echassières et bilan des mesures géophysiques de surface,” in In Géologie profonde de la France, Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 27–32, Géologie de la France, France, 1987. View at Google Scholar
  38. A. Cheilletz, D. Archibald, M. Cuney, and B. Charoy, “Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord Massif Central, France),” Significations pétrologique et géodynamique. Comptes Rendus de l’Académie des Sciences, vol. 315, pp. 329–336, 1992. View at Google Scholar
  39. T. Merceron, P. Vieillard, A.-M. Fouillac, and A. Meunier, “Hydrothermal alterations in the Echassières granitic cupola (Massif central, france),” Contributions to Mineralogy and Petrology, vol. 112, no. 2-3, pp. 279–292, 1992. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Harlaux, R. L. Romer, J. Mercadier, C. Morlot, C. Marignac, and M. Cuney, “40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite,” Mineralium Deposita, pp. 1–31, 2017. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Aubert, “Les coupoles granitiques de Montebras et d'Echassières (Massif Central Français) et la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium,” Mémoires du BRGM, vol. 46, p. 350, 1969. View at Google Scholar
  42. M. Aïssa, C. Marignac, and A. Weisbrod, “Le stockwerk à ferbérite d'Echassières : évolution spatiale et temporelle ; cristallochimie des ferbérites,” in Géologie profonde de la France, d'Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 311–333, Géologie de la France, France, 1987. View at Google Scholar
  43. R. J. Bodnar, “Introduction to aqueous-electrolyte fluid inclusions. Mineralogical Association of Canada,” Short Course, vol. 32, pp. 81–99, 2003. View at Google Scholar
  44. D. Michel, M. Christophe, C. Teddy et al., “Investigation of the H2O-NaCl-LiCl system: A synthetic fluid inclusion study and thermodynamic modeling from -50° to +100°C and up to 12 mol/kg,” Economic Geology, vol. 105, no. 2, pp. 329–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M.-C. Caumon, J. Dubessy, P. Robert, and A. Tarantola, “Fused-silica capillary capsules (FSCCs) as reference synthetic aqueous fluid inclusions to determine chlorinity by Raman spectroscopy,” European Journal of Mineralogy, vol. 25, no. 5, pp. 755–763, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Aïssa, A. Weisbrod, and C. Marignac, “Caractéristiques chimiques et thermodynamiques des circulations hydrothermales du site d’Echassières,” in Géologie profonde de la France, Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 335–350, Géologie de la France, 1987. View at Google Scholar
  47. E. Roedder, “The origin of inclusions.,” Reviews in Mineralogy, Volume 12: Fluid Inclusions, (Mineralogical Society of America), pp. 11–45, 1984. View at Google Scholar · View at Scopus
  48. E. Roedder, “Fluid inclusion analysis-Prologue and epilogue,” Geochimica et Cosmochimica Acta, vol. 54, no. 3, pp. 495–507, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. L. W. Diamond, “Review of the systematics of CO2-H2O fluid inclusions,” Lithos, vol. 55, no. 1-4, pp. 69–99, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. D. Günther, A. Audétat, R. Frischknecht, and C. A. Heinrich, “Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 13, no. 4, pp. 263–270, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. K. P. Jochum, U. Weis, B. Stoll et al., “Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines,” Geostandards and Geoanalytical Research, vol. 35, no. 4, pp. 397–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. B. Fricker, Design of ablation cells for LA-ICP-MS : from modeling to high spatial resolution analysis applications. [Ph. D. Thesis], 2012.
  53. M. M. Allan, B. W. D. Yardley, L. J. Forbes, K. I. Shmulovich, D. A. Banks, and T. J. Shepherd, “Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions,” American Mineralogist, vol. 90, no. 11-12, pp. 1767–1775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. H. P. Longerich, S. E. Jackson, and D. Günther, “Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation,” Journal of Analytical Atomic Spectrometry, vol. 11, no. 9, pp. 899–904, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Monnin, M. Dubois, N. Papaiconomou, and J.-P. Simonin, “Thermodynamics of the LiCl + H2O system,” Journal of Chemical & Engineering Data, vol. 47, no. 6, pp. 1331–1336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Dubessy, T. Lhomme, M.-C. Boiron, and F. Rull, “Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions,” Applied Spectroscopy, vol. 56, no. 1, pp. 99–106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Pichavant, M. Boher, J. F. Stenger, M. Aïssa, and B. Charoy, “Relations de phase des granites de Beauvoir à 1 et 3 kbar, en condition de saturation en H2O,” in Géologie profonde de la France, Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 77–85, Géologie de la France, France, 1987. View at Google Scholar
  58. A. H. Rankin, M. H. Ramsey, B. Coles, F. Van Langevelde, and C. R. Thomas, “The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and Synchrotron-XRF microprobe analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia,” Geochimica et Cosmochimica Acta, vol. 56, no. 1, pp. 67–79, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Cathelineau, C. Marignac, M.-C. Boiron, G. Gianelli, and M. Puxeddu, “Evidence for Li-rich brines and early magmatic fluid-rock interactionin the Larderello geothermal system,” Geochimica et Cosmochimica Acta, vol. 58, no. 3, pp. 1083–1099, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Monier, B. Charoy, M. Cuney, D. Ohnenstetter, and J. L. Robert, “Evolution spatiale et temporelle de la composition des micas du granite albitique à topaze-lépidolite de Beauvoir,” in In Géologie profonde de la France, Echassières : le forage scientifique. Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares, M. Cuney and A. Autran, Eds., pp. 179–188, Géologie de la France, France, 1987. View at Google Scholar
  61. R. Thomas and P. Davidson, “Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state - Consequences for the formation of pegmatites and ore deposits,” Ore Geology Reviews, vol. 72, pp. 1088–1101, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Charoy and F. Noronha, “Multistage growth of a rare-element, volatile-rich microgranite at argemela (Portugal),” Journal of Petrology, vol. 37, no. 1, pp. 73–94, 1996. View at Publisher · View at Google Scholar · View at Scopus
  63. J. D. Webster, R. Thomas, D. Rhede, H.-J. Förster, and R. Seltmann, “Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids,” Geochimica et Cosmochimica Acta, vol. 61, no. 13, pp. 2589–2604, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. J.-C. Zhu, R.-K. Li, F.-C. Li, X.-L. Xiong, F.-Y. Zhou, and X.-L. Huang, “Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, Southeast China,” Mineralium Deposita, vol. 36, no. 5, pp. 393–405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. L. Linnen and H. Keppler, “Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust,” Contributions to Mineralogy and Petrology, vol. 128, no. 2-3, pp. 213–227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Keppler, “Constraints from partitioning experiments on the composition of subduction-zone fluids,” Nature, vol. 380, no. 6571, pp. 237–240, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. V. Y. Chevychelov, G. P. Zaraisky, S. E. Borisovskii, and D. A. Borkov, “Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: Fractionation of Ta and Nb and conditions of ore formation in rare-metal granites,” Petrology, vol. 13, no. 4, pp. 305–321, 2005. View at Google Scholar · View at Scopus
  68. G. P. Borodulin, V. Y. Chevychelov, and G. P. Zaraysky, “Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts,” Doklady Earth Sciences, vol. 427, no. 1, pp. 868–873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Breiter, R. Škoda, and P. Uher, “Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic,” Mineralogy and Petrology, vol. 91, no. 3-4, pp. 225–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Bouabsa, C. Marignac, R. Chabbi, and M. Cuney, “The Filfila (NE Algeria) topaz-bearing granites and their rare metal minerals: Petrologic and metallogenic implications,” Journal of African Earth Sciences, vol. 56, no. 2-3, pp. 107–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Z.-Y. Zhu, R.-C. Wang, X.-D. Che, J.-C. Zhu, X.-L. Wei, and X. Huang, “Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals,” Ore Geology Reviews, vol. 65, no. 4, pp. 749–760, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Marignac, D. E. Aïssa, L. Bouabsa, M. Kesraoui, and S. Nedjari, “The Hoggar Gold and Rare Metals Metallogenic Province of the Pan-African Tuareg Shield (Central Sahara, South Algeria): An Early Cambrian Echo of the Late Ediacaran Murzukian Event?” in Mineral Deposits of North Africa, Mineral Resource Reviews, pp. 371–404, Springer International Publishing, Cham, Switzerland, 2016. View at Publisher · View at Google Scholar
  73. D. Ohnenstetter and P. Piantone, “Pyrochlore-group minerals in the Beauvoir peraluminous leucogranite, Massif Central, France,” The Canadian Mineralogist, vol. 30, no. 3, pp. 771–784, 1992. View at Google Scholar · View at Scopus
  74. B. Charoy, M. Chaussidon, C. Le Carlier de Veslud, and J. L. Duthou, “Evidence of Sr mobility in and around the albite-lepidolite-topaz granite of Beauvoir (France): An in-situ ion and electron probe study of secondary Sr-rich phosphates,” Contributions to Mineralogy and Petrology, vol. 145, no. 6, pp. 673–690, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. K. J. Jackson and H. C. Helgeson, “Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures,” Geochimica et Cosmochimica Acta, vol. 49, no. 1, pp. 1–22, 1985. View at Publisher · View at Google Scholar · View at Scopus
  76. C. A. Heinrich, “The chemistry of hydrothermal tin(-tungsten) ore deposition,” Economic Geology, vol. 85, no. 3, pp. 457–481, 1990. View at Publisher · View at Google Scholar · View at Scopus
  77. D. London, R. L. Hervig, and G. B. Morgan VI, “Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa,” Contributions to Mineralogy and Petrology, vol. 99, no. 3, pp. 360–373, 1988. View at Publisher · View at Google Scholar · View at Scopus
  78. V. I. Kovalenko, G. M. Tsareva, and M. Cuney, “Major-, trace elements and water in the magma of the Beauvoir rare metal granite, France (melt inclusion data),” Doklady Akademii Nauk, vol. 358, no. 5, pp. 667–671, 1998. View at Google Scholar · View at Scopus
  79. G. P. Zaraisky, V. Korzhinskaya, and N. Kotova, “Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa,” Mineralogy and Petrology, vol. 99, no. 3-4, pp. 287–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Timofeev, A. A. Migdisov, and A. E. Williams-Jones, “An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature,” Geochimica et Cosmochimica Acta, vol. 158, pp. 103–111, 2015. View at Publisher · View at Google Scholar · View at Scopus