Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2017, Article ID 2395730, 13 pages
https://doi.org/10.1155/2017/2395730
Research Article

Groundwater Chemistry and Overpressure Evidences in Cerro Prieto Geothermal Field

Instituto de Geofísica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, 04510 Mexico City, Mexico

Correspondence should be addressed to Ivan Morales-Arredondo; xm.manu.acisifoeg@amnavi

Received 19 May 2017; Revised 30 October 2017; Accepted 19 November 2017; Published 18 December 2017

Academic Editor: Ian Clark

Copyright © 2017 Ivan Morales-Arredondo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. K. Kharaka and J. S. Hanor, “Deep Fluids in the Continents: I. Sedimentary Basins,” Treatise on Geochemistry, vol. 5-9, pp. 1–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Boschetti, L. Toscani, O. Shouakar-Stash et al., “Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution,” Aquatic Geochemistry, vol. 17, no. 1, pp. 71–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Boschetti, “Application of brine differentiation and Langelier-Ludwig plots to fresh-to-brine waters from sedimentary basins: Diagnostic potentials and limits,” Journal of Geochemical Exploration, vol. 108, no. 2, pp. 126–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Arche, “Sedimentología del proceso físico a la cuenca sedimentaria,” in Consejo Superior de Investigaciones Científicas, 978-84-00-09145-3, pp. 1–1273, Madrid, Spain.
  5. S. J. Blott and K. Pye, “Particle shape: A review and new methods of characterization and classification,” Sedimentology, vol. 55, no. 1, pp. 31–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Ceriani, A. Di Giulio, R. H. Goldstein, and C. Rossi, “Diagenesis associated with cooling during burial: An examplefrom Lower Cretaceous reservoir sandstones (Sirt basin, Libya),” AAPG Bulletin, vol. 86, no. 9, pp. 1573–1591, 2002. View at Google Scholar · View at Scopus
  7. F. W. Witkowski, D. J. Blundell, P. Gutteridge, A. D. Horbury, N. H. Oxtoby, and H. Qing, “Video cathodoluminescence microscopy of diagenetic cements and its applications,” Marine and Petroleum Geology, vol. 17, no. 10, pp. 1085–1093, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Moore, “Carbonate reservoirs. Porosity evolution and diagenesis in a sequence stratigraphic framework,” Developments in Sedimentology, vol. 55, 2001. View at Google Scholar
  9. M. S. Fantle, K. M. Maher, and D. J. Depaolo, “Isotopic approaches for quantifying the rates of marine burial diagenesis,” Reviews of Geophysics, vol. 48, no. 3, Article ID RG3002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. M. Hiscock and V. F. Bense, Hydrogeology Principles And Practice, Wiley Blackwell, 2nd edition, 2014.
  11. R. E. Swarbrick, M. J. Osborne, and G. S. Yardley, “Comparison of overpressure magnitude resulting from the main generating mechanisms,” in Pressure Regimes in Sedimentary Basins and Their Prediction, A. R. Huffman and G. L. Bowers, Eds., vol. 76, pp. 1–12, American Association of Petroleum Geologists Memoir, 2002. View at Google Scholar
  12. A. I. Kauerauf and T. Hantschel, Fundamentals of Basin and Petroleum Systems Modeling, Springer Science & Business Media, 2009.
  13. O. Walderhaug, P. A. Bjørkum, P. H. Nadeau, and O. Langnes, “Quantitative modelling of basin subsidence caused by temperature-driven silica dissolution and reprecipitation,” Petroleum Geoscience, vol. 7, no. 2, pp. 107–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Zanella, P. R. Cobbold, and C. Le Carlier de Veslud, “Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock,” Marine and Petroleum Geology, vol. 55, pp. 262–274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Portugal and M. P. Verma, “Hidroquímica de la laguna de evaporación en Cerro Prieto,” in Ingeniería hidráulica en México, vol. 16, pp. 153–174, Baja California, Mexico, 2 edition, 2001. View at Google Scholar
  16. G. Izquierdo, A. Aragón, E. Portugal, V. M. Arellano, J. de León, and J. Álvarez, “Mineralogía de la zona mineralizada de sílice-epidota (ZMSE) del yacimiento geotérmico de Cerro Prieto B.C México,” Geotermia, vol. 19, no. 2, pp. 2–12, 2006. View at Google Scholar
  17. V. M. Arellano, R. M. Barragán, A. Aragón, M. H. Rodríguez, and A. Pérez, “The Cerro Prieto IV (Mexico) geothermal reservoir: Pre-exploitation thermodynamic conditions and main processes related to exploitation (2000-2005),” Geothermics, vol. 40, no. 3, pp. 190–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Armienta, R. Rodríguez, N. Ceniceros et al., “Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field, México,” Journal of Renewable Energy, vol. 63, pp. 236–254, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Camacho-Hernández, “Zonas de alteración hidrotermal y condiciones actuales del yacimiento: un enfoque para determinar zonas productoras al oriente del campo geotérmico de Cerro Prieto, BC,” Geotermia. Revista Mexicana de Geoenergia, vol. 22, no. 2, pp. 35–45, 2009. View at Google Scholar
  20. W. A. Elders, J. R. Hoagland, S. D. McDowell, and J. M. Cobo, “Hydrothermal mineral zones in the geothermal reservoir of Cerro Prieto,” Geothermics, vol. 8, no. 3-4, pp. 201–209, 1979. View at Publisher · View at Google Scholar · View at Scopus
  21. H. H. Lira, “Actualización del modelo geológico conceptual del yacimiento geotérmico de Cerro Prieto, BC,” Geotermia, vol. 18, no. 1, pp. 37–46, 2005. View at Google Scholar
  22. A. L. Peña, C. I. Puente, and C. E. Díaz, “Modelo geológico del campo geotérmico de Cerro Prieto. Geothermal-Energy,” Comision Federal de Electricidad, pp. 29–52, 1979, https://www.geothermal-energy.org/pdf/IGAstandard/DOE-CFE/1979/Pena.pdf. View at Google Scholar
  23. E. Portugal, J. Álvarez, and B. I. Romero, “Hydrochemical and isotopical tracers in the lacustrine aquifer of the Cerro Prieto area, Baja California, México,” Journal of Geochemical Exploration, vol. 88, no. 1-3, pp. 139–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Siem, The structure and petrology of Sierra El Mayor [Master, thesis], University of San Diego State, Northeastern Baja Calfornia, Mexico, 1992.
  25. A. L. Quintanilla-Montoya and F. Suárez-Vidal, “Cerro Prieto and its relation to the Gulf of California spreading centers,” Ciencias Marinas, vol. 22, no. 1, pp. 91–110, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. M. Cobo, Configuración de los cuerpos litológicos de lodolita, lutita café, lutita gris, zonas de sílice y epidota, y sus relaciones con la tectónica del campo geotérmico de Cerro Prieto. Proceedings of the Third Symposium on the Cerro Prieto Geothermal Field, Mexico, 1981.
  27. S. Vonder Haar and J. H. Howard, “Intersecting faults and sandstone stratigraphy at the cerro prieto geothermal field,” Geothermics, vol. 10, no. 3-4, pp. 145–167, 1981. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Manon, E. Mazor, M. Jimenez, A. Sanchez, J. Fausto, and C. Zenizo, “Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico,” Tech. Rep. LBL-7019, 1977. View at Publisher · View at Google Scholar
  29. E. Mazor and A. Mañon M., “Geochemical tracing in producing geothermal fields: A case study at Cerro Prieto,” Geothermics, vol. 8, no. 3-4, pp. 231–240, 1979. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Truesdell, R. O. Rye, F. J. Pearson Jr. et al., “Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field,” Geothermics, vol. 8, no. 3-4, pp. 223–229, 1979. View at Publisher · View at Google Scholar · View at Scopus
  31. A. H. Truesdell, J. M. Thompson, T. B. Coplen, N. L. Nehring, and C. J. Janik, “The origin of the Cerro Prieto geothermal brine,” Geothermics, vol. 10, no. 3-4, pp. 225–238, 1981. View at Publisher · View at Google Scholar · View at Scopus
  32. H. A. Truesdell, M. J. Lippmann, and H. Gutiérrez-Puente, “Evolution of the Cerro Prieto Reservoirs under exploitation,” in Proceedings of the Anual Meeting of the Geothermal Resources Council, pp. 1–7, Burlingame, Calif, USA, 1997.
  33. M. J. Lippmann, A. H. Truesdell, and K. Pruess, “The control of fault H on the hydrology of the Cerro Prieto III Area,” in Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering Standford University, Standford, Calif, USA, 2000.
  34. T. B. Coplen, “Origin of geothermal waters in the Imperial Valley of southern California. Cooperative Investigation of Geothermal Resources in the Imperial Valley and their Potential Value for Desaltine of Water and other purposes,” R. W. Rex, Ed., Rwerslde Report IGPP-UCR-72-33, pp. E1–E31, University of California, 1972. View at Google Scholar
  35. P. Birkle, E. P. Marín, D. L. Pinti, and M. C. Castro, “Origin and evolution of geothermal fluids from Las Tres Vírgenes and Cerro Prieto fields, Mexico - Co-genetic volcanic activity and paleoclimatic constraints,” Applied Geochemistry, vol. 65, pp. 36–53, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Nieva and R. Nieva, “Developments in geothermal energy in Mexico-part twelve. A cationic geothermometer for prospecting of geothermal resources,” Heat Recovery Systems and CHP, vol. 7, no. 3, pp. 243–258, 1987. View at Publisher · View at Google Scholar · View at Scopus
  37. S. P. Verma and E. Santoyo, “New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection,” Journal of Volcanology and Geothermal Research, vol. 79, no. 1-2, pp. 9–23, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. AWWA, APHA, and WWF, Standard methods for the Examination of Water and Wastewater, American Public health Association, The American Water Works Association, Association Water Environment Federation, Washington, D.C., USA, 2005.
  39. A. B. Carpenter, “Origin and chemical evolution of brines in sedimentary basins Oklahoma,” Geological Survey Circular, vol. 79, pp. 78–88, 1978. View at Publisher · View at Google Scholar
  40. M. L. Davisson and R. E. Criss, “Na-Ca-Cl relations in basinal fluids,” Geochimica et Cosmochimica Acta, vol. 60, no. 15, pp. 2743–2752, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. E. R. Olson, “Oxygen and Carbon isotopes studies of calcite from the Cerro Prieto Geothermal Field,” in Proceedings of the First Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, 1978.
  42. Hiriart Le Bert, Evaluación de la Energía Geotérmica en México Informe para el Banco Interamericano de Desarrollo y la Comisión Reguladora de Energía http://www.cre.gob.mx/documento/2026.pdf, 2011.
  43. W. J. Harrison and L. L. Summa, “Paleohydrology of the Gulf of Mexico basin,” American Journal of Science, vol. 291, no. 2, pp. 109–176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  44. E. D. Pittman and R. E. Larese, “Compaction of lithic sands: experimental results and applications,” The American Association of Petroleum Geologists Bulletin, vol. 75, pp. 1279–1299, 1991. View at Google Scholar · View at Scopus
  45. J. Gluyas and C. A. Cade, “Prediction of porosity compacted sands,” in Reservoir Quality Prediction in Sandstones and Carbonates, A. Kupecz, Gluyas J., and S. Bloch, Eds., vol. 69, pp. 19–28, AAPG, Memoir, 1997. View at Google Scholar
  46. S. N. Ehrenberg and P. H. Nadeau, “Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships,” AAPG Bulletin, vol. 89, no. 4, pp. 435–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. M. Prol-Ledesma, C. Arango-Galván, and M.-A. Torres-Vera, “Rigorous analysis of available data from cerro prieto and las tres virgenes geothermal fields with calculations for expanded electricity generation,” Natural Resources Research, vol. 25, no. 4, pp. 445–458, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. J. S. Hanor, “Origins of saline fluids in sedimentary basins,” in Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins, J. Parnell, Ed., pp. 151–174, Geological Society of London, 1994. View at Google Scholar · View at Scopus
  49. A. W. Hounslow, Water Quality Data, Analysis and Interpretation, Taylor & Francis Group, 1995.
  50. J. N. Valette-Silver, J. M. Thompson, and J. W. Ball, “Relationship between water chemistry and sediment mineralogy in the Cerro Prieto Geothermal Field: A preliminary report,” Geothermal Energy, pp. 263–273, 1981. View at Google Scholar
  51. K. H. Wolf and G. V. Chilingarian, “Chapter 1 Introduction,” Developments in Sedimentology, vol. 51, no. C, pp. 1–17, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Kaur, N. Chaudhri, A. W. Hofmann et al., “Two-stage, extreme albitization of A-type granites from Rajasthan, NW India,” Journal of Petrology, vol. 53, article egs003, no. 5, pp. 919–948, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Demir and B. Seyler, “Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin,” Aquatic Geochemistry, vol. 5, no. 3, pp. 281–311, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. G. V. Chilingarian, T. F. Donaldson, and T. F. Yen, “Subsidence due to fluid withdrawal,” in Developments in Petroleum Science, vol. 519, 41 Elsevier Sciences, 1995. View at Google Scholar
  55. A. Garcia, F. Ascencio, G. Espinosa, E. Santoyo, H. Gutierrez, and V. Arellano, “Numerical modeling of high temperatura deel Wells in the Cerro Prieto geotermal fiels, Mexico,” Geofisica Internacional, vol. 38, pp. 251–260, 1999. View at Google Scholar
  56. M. J. Lippmann, A. H. Truesdell, and H. Gutierrez-Puente, “What will a 6 km deep well at Cerro Prieto find,” in Proceedings of the twenty-first Workshop on Geothermal Reservoir Engineering, Stanford University, 1997, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/1997/Lippmann.pdf.
  57. M. J. Osborne and R. E. Swarbrick, “Mechanisms for generating overpressure in sedimentary basins: A reevaluation,” AAPG Bulletin, vol. 81, no. 6, pp. 1023–1041, 1997. View at Google Scholar · View at Scopus
  58. A. M. Stueber and L. M. Walter, “Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA,” Geochimica et Cosmochimica Acta, vol. 55, no. 1, pp. 309–325, 1991. View at Publisher · View at Google Scholar · View at Scopus
  59. N. H. Mondol, K. Bjørlykke, J. Jahren, and K. Høeg, “Experimental mechanical compaction of clay mineral aggregates-Changes in physical properties of mudstones during burial,” Marine and Petroleum Geology, vol. 24, no. 5, pp. 289–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. R. O. Fournier and J. J. Rowe, “Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells,” American Journal of Science, vol. 264, no. 9, pp. 685–697, 1966. View at Publisher · View at Google Scholar
  61. R. Sonney, Groundwater flow, heat and mass transport in geothermal systems of a Central Alpine Massif. The cases of Lavey-les Bains, Saint-Gervais-les-Bains and Val d’Illiez. Geochemistry. Université de Neuchatel, 2010.
  62. F. D’Amore and S. Arnórsson, “Isotopic and chemical techniques in geothermal exploration, development and use. Sampling methods, data handling, interpretation,” in Geothermometry, S. Arnórsson, Ed., pp. 152–199, International Atomic Energy Agency, Vienna, Austria, 2000. View at Google Scholar