Table of Contents Author Guidelines Submit a Manuscript
Volume 2018, Article ID 1653632, 20 pages
Research Article

Material Exchange and Migration between Pore Fluids and Sandstones during Diagenetic Processes in Rift Basins: A Case Study Based on Analysis of Diagenetic Products in Dongying Sag, Bohai Bay Basin, East China

1State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China
2College of Geosciences, China University of Petroleum, Beijing, China
3Shengli Oilfield Branch Company, Sinopec, Dongying, China

Correspondence should be addressed to J. H. Zeng; nc.ude.puc@hjgnez

Received 30 June 2017; Revised 15 December 2017; Accepted 28 December 2017; Published 15 February 2018

Academic Editor: Jet-Chau Wen

Copyright © 2018 W. Meng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The exchange and migration of basin materials that are carried by pore fluids are the essence of diagenesis, which can alter physical properties of clastic rocks as well as control formation and distribution of favorable reservoirs of petroliferous basins. Diagenetic products and pore fluids, resulting from migration and exchange of basin materials, can be used to deduce those processes. In this study, 300 core samples from 46 wells were collected for preparation of casting thin sections, SEM, BSE, EDS, inclusion analysis, and isotope analysis in Dongying Sag, Bohai Bay Basin, East China. Combined with geochemical characteristics of pore fluids and geological background of the study area, the source and exchange mechanisms of materials in the pore fluids of rift basins were discussed. It was revealed that the material exchange of pore fluids could be divided into five stages. The first stage was the evaporation concentration stage during which mainly , , and precipitated as high-Mg calcites. Then came the shale compaction stage, when mainly and from shale compaction water precipitated as calcites. The third stage was the carboxylic acid dissolution stage featured by predominant dissolution of plagioclases, during which and entered pore fluids, and Si and Al also entered pore fluids and then migrated as clathrates, ultimately precipitating as kaolinites. The fourth stage was the organic stage, mainly characterized by the kaolinization of K-feldspar as well as dissolution of metamorphic lithic fragments and carbon cements. During this stage, , , , , , and entered pore fluids. The fifth stage was the alkaline fluid stage, during which the cementation of ferro-carbonates and ankerites as well as illitization or chloritization of kaolinites prevailed, leading to the precipitation of , , , , and from pore fluids.