Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2018, Article ID 3403026, 17 pages
https://doi.org/10.1155/2018/3403026
Research Article

The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

1Division of Geology and Mineral Resources, CNNC Beijing Research Institute of Uranium Geology, No. 10 Anwai Xiaoguandongli, Chaoyang, Beijing 100029, China
2College of Geosciences, China University of Petroleum-Beijing, No. 18 Fuxue Road, Changping, Beijing 102249, China
3Research Center for Strategy of Global Mineral Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Correspondence should be addressed to Yunlong Zhang; moc.oohay@gnahz.gnoly and Zhidong Bao; nc.ude.puc@dhzoab

Received 14 April 2017; Revised 18 August 2017; Accepted 22 October 2017; Published 16 January 2018

Academic Editor: Micol Todesco

Copyright © 2018 Yunlong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Cao, Z. Song, S. Wang, X. Cao, Y. Li, and J. Xia, “Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China,” Marine and Petroleum Geology, vol. 61, pp. 140–150, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. H. P. Menke, B. Bijeljic, M. G. Andrew, and M. J. Blunt, “Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions,” Environmental Science and Technology, vol. 49, no. 7, pp. 4407–4414, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Rosenbrand, I. L. Fabricius, Q. Fisher, and C. Grattoni, “Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis,” Marine and Petroleum Geology, vol. 64, pp. 189–202, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Saboorian-Jooybari and P. Pourafshary, “Significance of non-Darcy flow effect in fractured tight reservoirs,” Journal of Natural Gas Science and Engineering, vol. 24, pp. 132–143, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Barnaji, P. Pourafshary, and M. R. Rasaie, “Visual investigation of the effects of clay minerals on enhancement of oil recovery by low salinity water flooding,” Fuel, vol. 184, pp. 826–835, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Barsotti, S. P. Tan, S. Saraji, M. Piri, and J.-H. Chen, “A review on capillary condensation in nanoporous media: Implications for hydrocarbon recovery from tight reservoirs,” Fuel, vol. 184, pp. 344–361, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ergun and A. A. Orning, “Fluid flow through randomly packed columns and fluidized beds,” Industrial and Engineering Chemistry, vol. 41, pp. 1179–1184, 1949. View at Google Scholar
  8. S. Whitaker, “The Forchheimer equation: a theoretical development,” Transport in Porous Media, vol. 25, no. 1, pp. 27–61, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. E. W. Washburn, “The dynamics of capillary flow,” Physical Review A: Atomic, Molecular and Optical Physics, vol. 17, no. 3, pp. 273–283, 1921. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Josh, L. Esteban, C. Delle Piane, J. Sarout, D. N. Dewhurst, and M. B. Clennell, “Laboratory characterisation of shale properties,” Journal of Petroleum Science and Engineering, vol. 88-89, pp. 107–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Dillinger and L. Esteban, “Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field Nuclear Magnetic Resonance,” Marine and Petroleum Geology, vol. 57, pp. 455–469, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tan, K. Mao, X. Song, X. Yang, and J. Xu, “NMR petrophysical interpretation method of gas shale based on core NMR experiment,” Journal of Petroleum Science and Engineering, vol. 136, pp. 100–111, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Gao and H. A. Li, “Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones,” Journal of Natural Gas Science and Engineering, vol. 28, pp. 536–547, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Han, Y. Cao, S.-J. Chen et al., “Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China,” Fuel, vol. 186, pp. 750–757, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Xiao, C.-C. Zou, Z.-Q. Mao, Y. Jin, and J.-C. Zhu, “A new technique for synthetizing capillary pressure (Pc) curves using NMR logs in tight gas sandstone reservoirs,” Journal of Petroleum Science and Engineering, vol. 145, pp. 493–501, 2016a. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Y. Beliaev and R. J. Schotting, “Analysis of a new model for unsaturated flow in porous media including hysteresis and dynamic effects,” Computational Geosciences, vol. 5, no. 4, pp. 345–368, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  17. R. Helmig, A. Weiss, and B. I. Wohlmuth, “Dynamic capillary effects in heterogeneous porous media,” Computational Geosciences, vol. 11, no. 3, pp. 261–274, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  18. C. R. Clarkson, M. Freeman, L. He et al., “Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis,” Fuel, vol. 95, pp. 371–385, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Rezaee, A. Saeedi, and B. Clennell, “Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data,” Journal of Petroleum Science and Engineering, vol. 88-89, pp. 92–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Jafari Behbahani, C. Ghotbi, V. Taghikhani, and A. Shahrabadi, “Investigation of asphaltene adsorption in sandstone core sample during CO2 injection: Experimental and modified modeling,” Fuel, vol. 133, pp. 63–72, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Z. Al-Yaseri, M. Lebedev, S. J. Vogt, M. L. Johns, A. Barifcani, and S. Iglauer, “Pore-scale analysis of formation damage in Bentheimer sandstone with in-situ NMR and micro-computed tomography experiments,” Journal of Petroleum Science and Engineering, vol. 129, pp. 48–57, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ghanizadeh, C. R. Clarkson, S. Aquino, O. H. Ardakani, and H. Sanei, “Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization,” Fuel, vol. 153, pp. 664–681, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sakhaee-Pour and S. L. Bryant, “Pore structure of shale,” Fuel, vol. 143, pp. 467–475, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Hua, M. Li, X. Ni, H. Wang, Z. Yang, and M. Lin, “Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs,” Fuel, vol. 182, pp. 687–695, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. P. H. Nelson, “Pore-throat sizes in sandstones, tight sandstones, and shales,” AAPG Bulletin, vol. 93, no. 3, pp. 329–340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Tian, L. Cheng, R. Cao et al., “A new approach to calculate permeability stress sensitivity in tight sandstone oil reservoirs considering micro-pore-throat structure,” Journal of Petroleum Science and Engineering, vol. 133, pp. 576–588, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Zhao, Z. Ning, Q. Wang et al., “Petrophysical characterization of tight oil reservoirs using pressure-controlled porosimetry combined with rate-controlled porosimetry,” Fuel, vol. 154, pp. 233–242, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Xi, Y. Cao, B. G. Haile et al., “How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China,” Marine and Petroleum Geology, vol. 76, pp. 1–15, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Xiao, C.-C. Zou, Z.-Q. Mao et al., “An empirical approach of evaluating tight sandstone reservoir pore structure in the absence of NMR logs,” Journal of Petroleum Science and Engineering, vol. 137, pp. 227–239, 2016b. View at Publisher · View at Google Scholar · View at Scopus
  30. A. J. Katz and A. H. Thompson, “Prediction of rock electrical conductivity from mercury injection measurements.,” Journal of Geophysical Research: Atmospheres, vol. 92, no. 1, pp. 599–607, 1987. View at Publisher · View at Google Scholar · View at Scopus
  31. Schowalter, “Mechanics of secondary hydrocarbon migration and entrapment,” AAPG Bulletin, vol. 63, pp. 12174–12181, 1979. View at Google Scholar
  32. S. Kolodzie, “Analysis of pore throat size and use of the waxman-smits equation to determine ooip in spindle field colorado, 1980”.
  33. E. D. Pittman, “Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone,” The American Association of Petroleum Geologists Bulletin, vol. 76, no. 2, pp. 191–198, 1992. View at Google Scholar · View at Scopus
  34. M. Spearing, T. Allen, and G. McAulay, “Review of the winland R35 method for net pay definition and its application in low permebility sands,” in SCA, 2001. View at Google Scholar
  35. B. S. Nabawy, Y. Géraud, P. Rochette, and N. Bur, “Pore-throat characterization in highly porous and permeable sandstones,” AAPG Bulletin, vol. 93, no. 6, pp. 719–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Norbisrath, G. P. Eberli, B. Laurich, G. Desbois, R. J. Weger, and J. L. Urai, “Electrical and fluid flow properties of carbonate microporosity types from multiscale digital image analysis and mercury injection,” AAPG Bulletin, vol. 99, no. 11, pp. 2077–2098, 2015. View at Publisher · View at Google Scholar · View at Scopus
  37. J. He, W. Ding, A. Li et al., “Quantitative microporosity evaluation using mercury injection and digital image analysis in tight carbonate rocks: A case study from the Ordovician in the Tazhong Palaeouplift, Tarim Basin, NW China,” Journal of Natural Gas Science and Engineering, vol. 34, pp. 627–644, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Wu, Q. Fan, D. Huang, L. Ma, X. Liang, and L. Sima, “Predicting gas-water relative permeability using Nuclear Magnetic Resonance and Mercury Injection Capillary Pressure measurements,” Journal of Natural Gas Science and Engineering, vol. 32, pp. 35–47, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. H. H. Yuan and B. F. Swanson, “Resolving pore-space characteristics by rate-controlled porosimetry,” SPE Formation Evaluation, vol. 4, no. 1, pp. 17–24, 1989. View at Google Scholar
  40. C. H. Arns, “A comparison of pore size distributions derived by NMR and X-ray-CT techniques,” Physica A: Statistical Mechanics and its Applications, vol. 339, no. 1-2, pp. 159–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Anand and G. J. Hirasaki, “Diffusional coupling between micro and macroporosity for NMR relaxation in sandstones and grainstones,” Petrophysics, vol. 48, no. 4, pp. 289–307, 2007. View at Google Scholar · View at Scopus
  42. H. Daigle and B. Dugan, “Extending NMR data for permeability estimation in fine-grained sediments,” Marine and Petroleum Geology, vol. 26, no. 8, pp. 1419–1427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Talabi and M. J. Blunt, “Pore-scale network simulation of NMR response in two-phase flow,” Journal of Petroleum Science and Engineering, vol. 72, no. 1-2, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Hossain, C. A. Grattoni, M. Solymar, and I. L. Fabricius, “Petrophysical properties of greensand as predicted from NMR measurements,” Petroleum Geoscience, vol. 17, no. 2, pp. 111–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Hübner, “Studying the pore space of cuttings by NMR and μCT,” Journal of Applied Geophysics, vol. 104, pp. 97–105, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Faÿ-Gomord, J. Soete, K. Katika et al., “New insight into the microtexture of chalks from NMR analysis,” Marine and Petroleum Geology, vol. 75, pp. 252–271, 2016. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Wang, S. Zhang, F. Zhang et al., “Quantitative research on tight oil microscopic state of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China,” Petroleum Exploration and Development, vol. 42, no. 6, pp. 827–832, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Zhu, D. Zhong, J. Yao et al., “Alkaline diagenesis and its effects on reservoir porosity: a case study of Upper Triassic Chang 7 Member tight sandstone in Ordos Basin, NW China,” Petroleum Exploration and Development, vol. 42, no. 1, pp. 56–65, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Y. Liu, H. G. Zhao, J. F. Zhao, J. Q. Wang, D. D. Zhang, and M. H. Yang, “Temporo-spatial coordinates of evolution of the ordos basin and its mineralization responses,” Acta Geologica Sinica-English Edition, vol. 82, pp. 1229–1243, 2008. View at Google Scholar
  50. Y. Wan, H. Xie, H. Yang et al., “Is the ordos block archean or paleoproterozoic in age? implications for the precambrian evolution of the north China craton,” American Journal of Science, vol. 313, no. 7, pp. 683–711, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. J. J. Yang, Tectonic Evolution and Oil Gas Reservoirs Distribution in Ordos Basin, Petroleum Industry Press, Beijing, China, 2002.
  52. R. Y. Chen, X. R. Luo, Z. K. Chen, J. Yu, and Y. Yang, “Restoration of burial history of four periods in Ordos Basin,” Acta Petrolei Sinica, vol. 27, pp. 43–47, 2006. View at Google Scholar
  53. Q. Xu, W. Shi, X. Xie et al., “Deep-lacustrine sandy debrites and turbidites in the lower Triassic Yanchang Formation, southeast Ordos Basin, central China: Facies distribution and reservoir quality,” Marine and Petroleum Geology, vol. 77, pp. 1095–1107, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Li, X. Liu, S. Zhou et al., “Hydrocarbon origin and reservoir forming model of the Lower Yanchang Formation, Ordos Basin,” Petroleum Exploration and Development, vol. 39, no. 2, pp. 184–193, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Yu, Y. J. Yang, and J. L. Du, “Sedimentation during the transgression period in Late Triassic Yanchang Formation, Ordos Basin,” Petroleum Exploration and Development, vol. 37, pp. 181–187, 2010. View at Google Scholar
  56. Y. Guo, J. Liu, H. Yang et al., “Hydrocarbon accumulation mechanism of low permeable tight lithologic oil fields in the Yanchang Formation, Ordos Basin, China,” Petroleum Exploration and Development, vol. 39, no. 4, pp. 447–456, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Deng, W. Li, X. Liu, J. Pang, and X. Leu, “Discussion on the stratigraphic boundary between middle triassic and upper triassic,” Acta Geologica Sinica, vol. 83, no. 8, pp. 1089–1096, 2009. View at Google Scholar · View at Scopus
  58. H. Yuan, “Advances in APEX Technology,” in SCA, 1990. View at Google Scholar
  59. J. M. Kate and C. S. Gokhale, “A simple method to estimate complete pore size distribution of rocks,” Engineering Geology, vol. 84, no. 1-2, pp. 48–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Schmitt, C. P. Fernandes, J. A. B. da Cunha Neto, F. G. Wolf, and V. S. S. dos Santos, “Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques,” Marine and Petroleum Geology, vol. 39, no. 1, pp. 138–149, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. “Oilfield Curve measurement of rock capillary pressure with constant rate method,” in Q/SY DQ1531-2012, 2012.
  62. J. Loren and J. Robinson, “Relations between pore size fluid and matrix properties, and NML measurements,” Society of Petroleum Engineers Journal, vol. 10, no. 03, pp. 268–278, 2013. View at Publisher · View at Google Scholar
  63. K. R. Brownstein and C. E. Tarr, “Importance of classical diffusion in NMR studies of water in biological cells,” Physical Review A: Atomic, Molecular and Optical Physics, vol. 19, no. 6, pp. 2446–2453, 1979. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Keating and R. Knight, “The effect of spatial variation in surface relaxivity on nuclear magnetic resonance relaxation rates,” Geophysics, vol. 77, no. 5, pp. E365–E377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. R. B. Robinson, “Classification of reservoir rocks by surface texture,” AAPG Bulletin, vol. 50, pp. 547–559, 1966. View at Google Scholar
  66. J. H. M. Thomeer, “Introduction of a pore geometrical factor defined by a capillary pressure curve,” Petroleum Transactions, AIME, Geoarabia Journal of the Middle East Petroleum Geosciences, vol. 219, pp. 354–358, 1960. View at Google Scholar
  67. B. F. Swanson, “A simple correlation between permeabilities and mercury capillary pressures,” Journal of Petroleum Technology, vol. 33, no. 12, pp. 2498–2504, 1981. View at Google Scholar
  68. J. Wells and J. Amaefule, “Capillary Pressure and Permeability Relationships in Tight Gas Sands,” in Proceedings of the SPE/DOE Low Permeability Gas Reservoirs Symposium, Denver, Colorado, USA, 1985. View at Publisher · View at Google Scholar
  69. B. Guo, A. Ghalambor, and S. Duan, “Correlation between sandstone permeability and capillary pressure curves,” Journal of Petroleum Science and Engineering, vol. 43, no. 3-4, pp. 239–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. B. S. Kwon and G. R. Pickett, “A new proe structure model and pore structure interrelationships,” in SPWLA 16Th Annual Logging Symposium, 1975. View at Google Scholar
  71. R. Aguilera, “Incorporating capillary pressure, pore throat aperture radii, height above free-water table, and Winland r35 values on Pickett plots,” AAPG Bulletin, vol. 86, no. 4, pp. 605–624, 2002. View at Google Scholar · View at Scopus
  72. S. An, J. Yao, Y. Yang, L. Zhang, J. Zhao, and Y. Gao, “Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model,” Journal of Natural Gas Science and Engineering, vol. 31, pp. 156–163, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, “Phase separation in confined systems,” Reports on Progress in Physics, vol. 62, no. 12, pp. 1573–1659, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Casanova, C. E. Chiang, C.-P. Li et al., “Effect of surface interactions on the hysteresis of capillary condensation in nanopores,” EPL (Europhysics Letters), vol. 81, no. 2, pp. 226–234, 2007. View at Google Scholar
  75. D. R. Cole, S. Ok, A. Striolo, and A. Phan, “Hydrocarbon behavior at nanoscale interfaces,” Reviews in Mineralogy and Geochemistry, vol. 75, pp. 495–545, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. K. E. Gubbins, Y. Long, and M. Śliwinska-Bartkowiak, “Thermodynamics of confined nano-phases,” The Journal of Chemical Thermodynamics, vol. 74, pp. 169–183, 2014. View at Publisher · View at Google Scholar · View at Scopus