Table of Contents Author Guidelines Submit a Manuscript
Geofluids
Volume 2018, Article ID 8715080, 24 pages
https://doi.org/10.1155/2018/8715080
Research Article

Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China

1School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
2Institute of Groundwater and Earth Sciences, Jinan University, 601 Huangpu Ave., Guangzhou, Guangdong 510632, China

Correspondence should be addressed to Guoping Lu; moc.oohay@ulgnipoug

Received 11 September 2017; Revised 17 November 2017; Accepted 4 January 2018; Published 31 January 2018

Academic Editor: Aref Lashin

Copyright © 2018 Xiao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. O. Awaleh, F. B. Hoch, I. H. Kadieh et al., “The geothermal resources of the Republic of Djibouti - I: Hydrogeochemistry of the Obock coastal hot springs,” Journal of Geochemical Exploration, vol. 152, pp. 54–66, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Dotsika, I. Leontiadis, D. Poutoukis, R. Cioni, and B. Raco, “Fluid geochemistry of the Chios geothermal area, Chios Island, Greece,” Journal of Volcanology and Geothermal Research, vol. 154, no. 3-4, pp. 237–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Dotsika, D. Poutoukis, and B. Raco, “Fluid geochemistry of the Methana Peninsula and Loutraki geothermal area, Greece,” Journal of Geochemical Exploration, vol. 104, no. 3, pp. 97–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Tarcan and Ü. Gemici, “Water geochemistry of the Seferihisar geothermal area, İzmir, Turkey,” Journal of Volcanology and Geothermal Research, vol. 126, no. 3-4, pp. 225–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Vengosh, C. Helvaci, and I. H. Karamanderesi, “Geochemical constraints for the origin of thermal waters from western Turkey,” Applied Geochemistry, vol. 17, no. 3, pp. 163–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Magri, T. Akar, U. Gemici, and A. Pekdeger, “Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova Geothermal system, western Turkey,” Hydrogeology Journal, vol. 20, no. 1, pp. 103–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Gurav, H. K. Singh, and D. Chandrasekharam, “Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India,” Arabian Journal of Geosciences, vol. 9, no. 1, article no. 44, pp. 1–15, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Risacher, B. Fritz, and A. Hauser, “Origin of components in Chilean thermal waters,” Journal of South American Earth Sciences, vol. 31, no. 1, pp. 153–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Chandrajith, J. A. C. Barth, N. D. Subasinghe, D. Merten, and C. B. Dissanayake, “Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients,” Journal of Hydrology, vol. 476, pp. 360–369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Lashin, D. Chandrasekharam, N. Al Arifi, A. Al Bassam, and C. Varun, “Geothermal energy resources of wadi Al-Lith, Saudi Arabia,” Journal of African Earth Sciences, vol. 97, pp. 357–367, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Yuan, X. M. Mao, and Y. X. Wang, “Hydrogeochemical Characteristics of Low to Medium Temperature Groundwater in the Pearl River Delta Region, China,” Procedia Earth Planetary Science, vol. 7, pp. 928–931, 2013. View at Google Scholar
  12. H.-Q. Huang, X.-H. Li, Z.-X. Li, and W.-X. Li, “Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China,” Journal of Asian Earth Sciences, vol. 74, pp. 280–302, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. O. A. Critchett, “Geothermal resources and the continuous operation of power station for the last decade in Fengshun county Guangdong Province,” Acta Energiae Solaris Sinica, 1995. View at Google Scholar
  14. G. Zhang, C.-Q. Liu, H. Liu, Z. Jin, G. Han, and L. Li, “Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China,” Geothermics, vol. 37, no. 1, pp. 73–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Lu and R. Liu, “Aqueous chemistry of typical geothermal springs with deep faults in Xinyi and Fengshun in Guangdong Province, China,” Journal of Earth Science, vol. 26, no. 1, pp. 60–72, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. Bureau of Geology and Mineral Resources of Guangdong Province, Regional geology of Guangdong province, People’s Republic of China, Geology Publishing House, Beijing, China, 1988.
  17. S. Pastorelli, L. Marini, and J. C. Hunziker, “Water chemistry and isotope composition of the Acquarossa thermal system, Ticino, Switzerland,” Geothermics, vol. 28, no. 1, pp. 75–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Sun, A. Wang, J. Liu, B. Hu, and J. Chen, “Radiogenic Heat Production of Granites and Potential for Hot Dry Rock Geothermal Resource in Guangdong Province, Southern China,” in Proceedings of the Proceedings World Geothermal Congress, Melbourne, Australia, 2015.
  19. X. M. Zhou and W. X. Li, “Origin of late mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas,” Tectonophysics, vol. 326, no. 3-4, pp. 269–287, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Zhou, T. Sun, W. Shen, L. Shu, and Y. Niu, “Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution,” Episodes, vol. 29, no. 1, pp. 26–33, 2006. View at Google Scholar · View at Scopus
  21. L. Chen, T. Ma, Y. Du et al., “Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China,” Journal of Volcanology and Geothermal Research, vol. 318, pp. 45–54, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Guo, X. Mao, S. Tong, and L. Feng, “Using hydrochemical geothermometers calculate exchange temperature of deep geothermal system in west coastal area of Guangdong Province,” Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, vol. 41, no. 12, pp. 2075–2087, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. R. O. Fournier, “Chemical geothermometers and mixing models for geothermal systems,” Geothermics, vol. 5, no. 1-4, pp. 41–50, 1977. View at Publisher · View at Google Scholar · View at Scopus
  24. S. P. Verma and E. Santoyo, “New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection,” Journal of Volcanology and Geothermal Research, vol. 79, no. 1-2, pp. 9–23, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. W. F. Giggenbach, “Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators,” Geochimica et Cosmochimica Acta, vol. 52, no. 12, pp. 2749–2765, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. R. O. Fournier and A. H. Truesdell, “An empirical NaKCa geothermometer for natural waters,” Geochimica et Cosmochimica Acta, vol. 37, no. 5, pp. 1255–1275, 1973. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Fouillac and G. Michard, “Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs,” Geothermics, vol. 10, no. 1, pp. 55–70, 1981. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Yaoli and M. Chu, “On the relations between the features of geological formation and the geomorohic growth in Guangdong Province,” Yunnan Geographic Environment Research, vol. 75, no. 13, pp. 4398–4409, 1995. View at Google Scholar
  29. K.-Y. Kim, H. Seong, T. Kim et al., “Tidal effects on variations of fresh-saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea),” Journal of Hydrology, vol. 330, no. 3-4, pp. 525–542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Appelo and D. Postma, Geochemistry, groundwater and pollution, 2nd edition, 2005.
  31. R. C. Arthur, T. Iwatsuki, E. Sasao, R. Metcalfe, K. Amano, and K. Ota, “Geochemical constraints on the origin and stability of the Tono Uranium Deposit, Japan,” Geochemistry: Exploration, Environment, Analysis, vol. 6, no. 1, pp. 33–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Arnórsson and I.A.E. Agency, Isotopic and chemical techniques in geothermal exploration, development and use : sampling methods, data handling, interpretation, International Atomic Energy Agency, 2000.
  33. D. B. N. Wishart, Comparison of Silica and Cation Geothermometers of Bath Hot Springs, Jamaica WI, World Geothermal Congress, 2015.
  34. A. J. Ellis and W. A. J. Mahon, Chemistry and Geothermal Systems, Academic Press, 1977.
  35. K. Pruess, C. M. Oldenburg, and G. Moridis, TOUGH2 User's Guide, 2011.
  36. A. Frumkin and H. Gvirtzman, “Cross-formational rising groundwater at an artesian karstic basin: The Ayalon Saline Anomaly, Israel,” Journal of Hydrology, vol. 318, no. 1-4, pp. 316–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. U. Lauber and N. Goldscheider, “Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany),” Hydrogeology Journal, vol. 22, no. 8, pp. 1807–1824, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Wang, M. Jin, B. Jia, and F. Kang, “Hydrochemical characteristics and geothermometry applications of thermal groundwater in northern Jinan, Shandong, China,” Geothermics, vol. 57, pp. 185–195, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Michard, “Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas,” Chemical Geology, vol. 89, no. 1-2, pp. 117–134, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Alçiçek, A. Bülbül, and M. C. Alçiçek, “Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, Southwestern Anatolia, Turkey),” Journal of Volcanology and Geothermal Research, vol. 309, pp. 118–138, 2016. View at Publisher · View at Google Scholar · View at Scopus
  41. A. A. El-Fiky, “Hydrogeochemistry andGeothermometry of thermal groundwater from the Gulf of Suez region, Egypt,” Journal of King Abdulaziz University, Earth Sciences, vol. 20, no. 2, pp. 71–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Nicholson, Geothermal fluids: chemistry and exploration techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, 1993. View at Publisher · View at Google Scholar
  43. Q. Guo and Y. Wang, “Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China,” Journal of Volcanology and Geothermal Research, vol. 215-216, pp. 61–73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. R. L. Linnen, C. Galeschuk, and N. M. Halden, The use of fracture minerals to define metasomatic aureoles around rare-metal pegmatites. Fracture Chlorites in Exploration, IAGS, 27th edition.
  45. S.-G. Lee, T.-K. Kim, J.-S. Lee, T. J. Lee, B. W. Cho, and H. J. Koh, “Geochemical implication of 87Sr/86Sr ratio of high-temperature deep groundwater in a fractured granite aquifer,” Geochemical Journal, vol. 42, no. 5, pp. 429–441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Kumar, C. K. Singh, C. Saraswat, B. Mishra, and T. Sharma, Evaluation of aqueous geochemistry of fluoride enriched groundwater: A case study of the Patan district, Gujarat, Western India, Water Science, 2017.
  47. A. Minissale, G. Magro, O. Vaselli, C. Verrucchi, and I. Perticone, “Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy),” Journal of Volcanology and Geothermal Research, vol. 79, no. 3-4, pp. 223–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. W. M. Edmunds, “Bromine geochemistry of British groundwaters,” Mineralogical Magazine, vol. 60, no. 2, pp. 275–284, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. R. E. Diamond and C. Harris, “Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: Recharge at high altitude?” Journal of African Earth Sciences, vol. 31, no. 3-4, pp. 467–481, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Craig, “Isotopic variations in meteoric waters,” Science, vol. 133, no. 3465, pp. 1702-1703, 1961. View at Publisher · View at Google Scholar · View at Scopus
  51. A. H. Truesdell and J. R. Hulston, “Chapter 5-isotopic evidence on environments of geothermal systems,” Terrestrial Environment A, pp. 179–226, 1980. View at Google Scholar
  52. R. J. Motyka, C. J. Nye, D. L. Turner, and S. A. Liss, “The geyser bight geothermal area, Umnak Island, Alaska,” Geothermics, vol. 22, no. 4, pp. 301–327, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Lu, E. L. Sonnenthal, and G. S. Bodvarsson, “Multiple component end-member mixing model of dilution: Hydrochemical effects of construction water at Yucca Mountain, Nevada, USA,” Hydrogeology Journal, vol. 16, no. 8, pp. 1517–1526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. D. L. Parkhurst and C. A. J. Appelo, “User's guide to PHREEQC - a computer program for speciation,batch-reaction, one-dimensional transport, and inversegeochemical calculations,” U.s.geological Survey Water Resources Investigations Report, vol. 99, 1999. View at Google Scholar
  55. D. K. Nordstrom and E. A. Jenne, “Fluorite solubility equilibria in selected geothermal waters,” Geochimica et Cosmochimica Acta, vol. 41, no. 2, pp. 175–188, 1977. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Jang, “TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration,” Computers & Geosciences, vol. 32, no. 2, pp. 145–165, 2006. View at Google Scholar
  57. R. O. Fournier, “A revised equation for Na/K geothermometer,” in Proceedings of the Expanding the Geothermal Frontier, Transactions Volume 3, Geothermal Resources Council Annual Meeting., pp. 221–224. View at Scopus
  58. R. O. Fournier and R. W. Potter II, “Magnesium correction to the NaKCa chemical geothermometer,” Geochimica et Cosmochimica Acta, vol. 43, no. 9, pp. 1543–1550, 1979. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Pandarinath, “Solute geothermometry of springs and wells of the Los Azufres and Las Tres Virgenes geothermal fields, Mexico,” International Geology Review, vol. 53, no. 9, pp. 1032–1058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Y. García-Soto, K. Pandarinath, J. E. Marrero-Ochoa, and C. Díaz-Gómez, “Solute geothermometry of Cerro Prieto and Los Humeros geothermal fields, Mexico: considerations on chemical characteristics of thermal water,” Arabian Journal of Geosciences, vol. 9, no. 8, article no. 517, 2016. View at Publisher · View at Google Scholar · View at Scopus
  61. R. W. Henley, “Fluid Mineral Equilibria in Hydrothermal Systems,” Reviews in Economic Geology, vol. 1, 1984. View at Google Scholar
  62. F. Xu and L. Guo, “The Aqueous Chemistry and Hydrodynamic Characteristics of Brackish Waters in the Xinzhou Geothermal Field, Coastal Guangdong,” Safety and Environmental Engineering, vol. 24, no. 1, pp. 1–10, 2017. View at Google Scholar
  63. J. F. Yuan, Hrodrogeochemistry of the Geothermal system in Coastal Areas of Guangdong Province, South China, China University of Geoscicences, 2013.
  64. M. H. Reed, “Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase,” Geochimica et Cosmochimica Acta, vol. 46, no. 4, pp. 513–528, 1982. View at Publisher · View at Google Scholar · View at Scopus
  65. N. Spycher, L. Peiffer, E. L. Sonnenthal, G. Saldi, M. H. Reed, and B. M. Kennedy, “Integrated multicomponent solute geothermometry,” Geothermics, vol. 51, pp. 113–123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Peiffer, C. Wanner, N. Spycher, E. L. Sonnenthal, B. M. Kennedy, and J. Iovenitti, “Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area,” Geothermics, vol. 51, pp. 154–169, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Neupane, J. S. Baum, E. D. Mattson, G. L. Mines, C. D. Palmer, and R. W. Smith, “Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants,” Fortieth Workshop on Geothermal Reservoir Engineering, Stanford University, 2001. View at Google Scholar
  68. C. D. Palmer, S. R. Ohly, R. W. Smith, G. Neupane, T. McLing, and E. Mattson, “Mineral selection for multicomponent equilibrium geothermometry,” in Proceedings of the Geothermal Resources Council Annual Meeting - Geothermal: A Global Solution, GRC 2014, pp. 453–459, usa, October 2014. View at Scopus
  69. Z.-H. Pang and M. Reed, “Theoretical chemical thermometry on geothermal waters: problems and methods,” Geochimica et Cosmochimica Acta, vol. 62, no. 6, pp. 1083–1091, 1998. View at Publisher · View at Google Scholar · View at Scopus