Research Article  Open Access
Experimental Study on the Effect of Gas Pressure on Ultrasonic Velocity and Anisotropy of Anthracite
Abstract
To research the elasticity of gasbearing coal fluidsolid twophase medium with seismic exploration method is critical to the prevention of gas disasters. To investigate the elasticity, the ultrasonic elastic test of anthracite samples under different gas pressures was carried out and the ultrasonic velocity and anisotropy of the samples were analyzed in this study. The results show that the velocities (P and Swaves) decrease in turn in the strike, dip, and vertical directions. However, a negative linear correlation is proved to exist between ultrasonic velocity and gas pressure. With the increase of gas pressure, the anisotropy degree of both the Pwave and the Swave of the samples decreases but the declining degree of the Pwave is greater than that of the Swave. In addition, the decrease in velocity and the anisotropy degree of the Pwave is greater than that of the Swave, indicating that the Pwave is more sensitive to gas pressure changes in terms of velocity and its anisotropy degree.
1. Introduction
The condition of complex multiphase medium, which is composed of the material composition and structure of coal and fluid gas, is the bottleneck for the mechanism study of coal and the prevention of gas disasters [1]. So far, the information of material composition and structure of coal is obtained mainly through in situ coal seam drilling. However, drilling is costly, laborious, and timeconsuming, and thus, it is urgent to analyze the composition and structure characteristics of coal from smallscale laboratory physical experiments. The coal ultrasonic testing technology, thanks to its good orientation, strong directivity, and outstanding penetration ability [2], is used to measure the elastic parameters of coal samples [3]. Although there is a great difference between the ultrasonic wave and the actual seismic frequency band, ultrasonic measurement is significant for actual lowfrequency seismic exploration [4].
In China, when the gas pressure in a coal seam reaches or exceeds 0.74 MPa, the coal seam can be defined as an outburst coal seam and corresponding outburst prevention measures should be taken [5]. For this reason, many scholars have carried out in situ seismic wave tests in coal mines in order to provide guidance for the prevention and control of gas disasters. Their research results showed that the presence of gas would reduce the strength of coal and cause coal seam fracture, which is prone to trigger coal and gas outburst accidents [6–8], and that there is a negative linear correlation between coal seam gas content and singlecomponent seismic wave parameters. Specifically, as the gas pressure increases, the velocities (P and Swaves) decrease gradually, the inherent dominant frequency of the coal seam decreases, the attenuation coefficient increases, and the quality factor decreases [9–11]. As instructive as the above occurrence rules are, it is still difficult to reveal the mechanism scientifically in that the current researches only focus on singlecomponent seismic data on the single direction. Besides, the complex underground site conditions and various influence factors also increase the complexity of the issue under discussion. Therefore, many scholars have conducted longterm researches on the physical and mechanical properties of coal samples [12–16] and gained some important insights on elasticity. For example, the greater the density of the coal samples is, the larger the velocities (P and Swaves) become [17]. Under normal temperature and atmospheric pressure conditions, the ultrasonic velocity decreases in turn in the strike direction , the dip direction , and the vertical direction . That is to say, the velocities (P and Swaves) display azimuthal anisotropy [17, 18]. Moreover, the attenuation of the Pwave is remarkably greater than that of the Swave with the change of fracture orientation [19, 20].
In summary, many researches have been conducted on the variation law of seismic wave parameters of outburst coal through in situ seismic wave test of coal seam but it is difficult to reveal the mechanism scientifically due to the limitation of site conditions and complex influence factors. Some scholars have studied the ultrasonic elastic parameters and anisotropic characteristics of coal samples such as velocity anisotropy, Poisson’s ratio, and attenuation with different degrees of metamorphism under normal temperature and atmospheric pressure conditions through laboratory coal physical experiments. However, the ultrasonic experiments of coal samples are mainly aimed at singlephase solid coal. Considering that gasbearing coal is a fluidsolid twophase medium and the limitations of test equipment and conditions, the current related research only focuses on singlephase solid coal and the results are lacking of representativeness and persuasion.
The purpose of this paper is to study the influence of fluid gas on the ultrasonic velocity and anisotropy of coal samples. Therefore, the ultrasonic velocity response characteristics of coal samples under different gas pressures are tested and the effect of gas pressure on the ultrasonic anisotropy of coal samples is analyzed. The research results of this paper may provide some guidance for coal and gas disaster prediction.
2. Sampling and Experiment
2.1. Sample Preparation
The samples in this study were collected at the tunneling face of the Xinjing Coal Mine in the Yangquan coalfield (Figure 1). The Yangquan coalfield is one of the most important anthracite coal bases in China. Its annual gas emission accounts for about onesixth of China’s total gas emission, and most of its coal seams are outburst seams. All the coal samples used in this paper were taken from #8 coal samples, larger than 300 mm in diameter, at the newly exposed tunneling face. They were wrapped and sealed in paper and black plastic bags and then transported to the ground. According to the standards of coal experiments [21], the coal block was processed into cubic coal samples of . Then each surface was sanded and leveled with the abrasive paper to avoid secondary damage as much as possible, until the requirements for samples were met. Next, samples were ground, until the nonparallelism of the surfaces on both ends was less than 0.05 mm. Finally, five standard #8 coal samples were processed, as shown in Figure 2.
In Figure 1, and denote the two directions parallel to the coal seam and refers to the direction vertical to the coal seam.
The size of coal samples is measured by a vernier caliper, and the density is measured by the drainage method [22]. Ash, moisture, and volatile matter of coal samples could be obtained by industrial analysis of coal [23]. Adsorption constants ( and ) of #8 coal samples were obtained by isothermal adsorption experiment [24]. The basic parameters of coal samples are shown in Table 1.

2.2. Experimental Apparatus and Experimental Error Analysis
The ultrasound pulse transmission method is used in the experiment [25, 26]. The acoustic signals of coal samples are collected by DB16A multichannel ultrasonic instrument. The sampling frequency is 100 kHz. The velocities (P and Swaves) of coal samples can be calculated as follows [27, 28]: where and are the velocities (P and Swaves), in m/s; denotes the length of samples, in m; , are the first arrival time of signals, in s; is the docking time of transducers, in s.
Test errors are inevitable due to the experimental method and human factors [16], which may influence the test results. The error calculation is shown as equations 2 and 3: where denotes the error of velocity, in m/s; is the travel time of signals, in s; is the picking error, in s; is the error of docking time, in s; and are the length and length error of coal samples, in m; stands for the velocity error.
and of the ultrasonic speed experiment are set at the value of 0.1 μs based on the sampling interval (0.1 μs). is the length error, being less than 0.05 mm. For example, the first arrival time of the signals of the coal samples is about 30 μs. The errors in actual measurement also include calibration errors and data reading errors. Therefore, according to equation (3), the velocity errors may change but only by .
2.3. Experimental Procedure
As shown in Figure 3, the test is carried out by using the gasbearing coal ultrasonic test system in the State Key Laboratory of Coal Resources and Safe Mining of China University of Mining and Technology (CUMT). The system can be used to test the ultrasonic velocity of coal under different gas pressure conditions. Then the ultrasonic elastic response and anisotropic characteristics of coal samples under different gas pressure conditions are revealed. In the test, the gas pressure is loaded in an isogradient manner. The specific test procedure is shown as follows. (1)The experiment is conducted under normal temperature and atmospheric pressure (298 K, 1 atm)(2)To ensure the coupling between the probe and the sample surface, the Shear Gel is applied on the probe surface after the prepared sample is put into the coal clamp and then covered with the top lid(3)To check the air tightness of the system, it is observed whether the piezometer reading is changed or not. A vacuum pump is used to vacuum the sealed cylinder block. When the negative pressure in the chamber is stabilized at 0.1 MPa, the vacuum should be stopped. The acoustic signals in the and directions and in the direction under the negative pressure condition are collected by three ultrasonic transducers(4)When the vacuum test is finished, the cylinder body is filled slowly with the highpressure mixture gas (CO_{2} 40%) instead of CH_{4} gas in an isogradient manner through the pressure relief valve to a predetermined pressure value (0.11.4 MPa) [29]. This operation can be justified by the fact that according to laboratory safety regulations, the use of CH_{4} gas is prohibited during the experiment and that the abovementioned mixed gas has similar adsorption effect with CH_{4} gas [30]. Then the air tightness of the system is checked again. After the gas reaches the adsorption equilibrium and the preset pressure value is maintained for 24 hours, the acoustic signals of the samples under different gas pressures are finally collected. Based on Langmuir isothermal adsorption equation (4) [24], the gas adsorption capacity of coal samples under different pressure equilibrium conditions can be estimated, as shown in Table 2 and Figure 4. It should be mentioned that the pure component isotherm is empirically used to describe an actual binary system, thus neglecting any competitive adsorption of CO_{2} and N_{2}where denotes the gas adsorption capacity of the coal sample, in ml/g; is the pressure of gas, in MPa; and are the adsorption constants of the coal sample. As can be seen from Figure 4, with the increase of gas pressure, the gas adsorption capacity of five coal samples is also increasing gradually, but the rising trend becomes milder in the later phase(5)The signals collected are calculated, processed, and analyzed (refer to Section 2.2)

3. Test Results and Discussion
3.1. Ultrasonic Velocity of GasBearing Coal Samples
Since the five anthracite samples are all taken from large coal samples from the same coal seam, the measured ultrasonic velocity values can denote the comprehensive response values of various material components, pore structure, and bedding plane of coal. Therefore, the average value of the ultrasonic velocity data of the five anthracite samples is analyzed and the analysis results (shown in Table 3) can reflect the general characteristics of #8 anthracite.

The ultrasonic elasticity test indicates that the ultrasonic velocity of coal samples shows similar downward trends with the increase of gas pressure. As shown in Figures 5(a) and 5(b), the of anthracite coal samples is about 16001800 m/s while the is within the interval of 8001000 m/s. Compared with the previous research results [14–19, 31–33], the ultrasonic velocity results of the coal samples in this study are within a reasonable range.
(a)
(b)
According to the results of previous researches [14–19, 31–33], the and of the coal samples are the comprehensive response value of geological parameters such as material composition, pore structure, and environment of coal itself. The density, temperature, stress, and water of coal all influence the ultrasonic wave velocity of coal [17]. However, the five coal samples used in this experiment are all taken from the same position and the experiment is carried out under the same normal temperature and pressure. Therefore, it can be concluded that the density, temperature, stress, and moisture of coal samples cannot be the main factors leading to the above changes [34–36].
The adsorption of gas leads to a decrease in the strength of coal samples [37], which can be reflected in the variation of the and .
3.2. Variation in Ultrasonic Velocity of Coal Samples under Different Gas Pressures
From Figure 6, it can be seen that components of and of the coal samples are very different in the three directions, and meanwhile, their degree of decline varies from one another as the gas pressure increases.
(a)
(b)
Specifically, as shown in Figures 6(a) and 6(b), and of the coal samples decrease in turn in the strike direction , the dip direction , and the vertical direction . However, in Figures 5(a) and 5(b), it can be seen that the correlation coefficient between ultrasonic velocity and gas pressure in the vertical direction is significantly higher than that in the strike direction and the dip direction . Therefore, the clay and pore fracture of coal may be the main cause for this phenomenon. Meanwhile, with the increase of gas pressure, and of the coal samples show a noticeable downward trend, in which decreases by 7.86%, 6.92%, and 4.83% in the strike direction , the dip direction , and the vertical direction , respectively, while decreases by 5.6%, 4.53%, and 3.44%, respectively, in the corresponding three directions. The Pwave, especially highfrequency ultrasonic Pwave, is more sensitive to gas pressure changes, which may be justified by the strong absorption and attenuation of ultrasonic elastic waves by gasbearing coal fluidsolid twophase medium.
Previous studies [37–40] have shown that the adsorption and desorption of coal samples are physical phenomena. When the coal samples absorb gas, they undergo expansion. On the contrary, compression deformation occurs after gas is desorbed. The deformation firstly weakens the strength of the coal samples and increases the brittleness of the coal samples, making the coal more prone to instability and damage. Then the instability and failure process of the coal samples are to be accelerated, leading to the decrease of coal sample strength and the increase of brittleness. In the meanwhile, along with the phenomena of gas adsorption and expansion deformation of the coal samples, there is a size effect on the coal samples—to be specific, the volume of the coal sample increases (adsorption expansion). Therefore, in the calculation of ultrasonic velocity of the coal samples, the proportion of the volume increase caused by the adsorption and expansion is analyzed below.
According to the existing research, under the constant gradient pressure conditions, the adsorption expansion deformation of coal samples increases as time goes by but the cumulative deformation eventually tends to remain at a stable value. The isocratic pressure in the reference [40] is set to a value of 1.5 MPa. The microstrain of cumulative adsorption expansion is achieved under the condition of adsorption equilibrium. According to the reference [41], the maximum deformation of the coal sample used in the experiment can be calculated by the calculation formula of the coal adsorption deformation equation. where denotes the adsorption deformation quantity of the coal sample, in ‰; is the gas pressure, in MPa; is the limit adsorption deformation constant of the coal sample when gas pressure tends to be infinite, in ‰; is the adsorption deformation constant of the coal sample, in MPa^{1}.
Table 4 shows that the maximum adsorption deformation quantity of the gasbearing coal sample in the calculation of coal ultrasonic velocities is only 2.99‰, so the effect of gas adsorption deformation on anthracite samples is small.

The gasbearing coal sample is a typical fluidsolid twophase and twoporosity medium, and the sample is composed of solid skeleton, pore, fracture, and gas filled in the pore and fracture [42]. There exist three kinds of compressional wave (Pwave and two slow compressional waves and ) and Swave. The velocity of the Pwave is the fastest, the Swave ranks second, and and are the slowest [43]. The Pwave and Swave propagate in the skeleton. Slow compressional wave is produced by the interaction of the solid skeleton and gas in the pore, and slow compressional wave is produced by the interaction of the solid skeleton and gas in the fracture.
In this paper, only the Pwave and Swave are studied. Accordingly, the influence factor of Pwave and Swave velocity variations only includes the solid skeleton. On the one hand, the skeleton deformation is caused by gas adsorption. In the previous study, the effect of gas adsorption deformation on anthracite samples is small, so adsorption deformation has little effect on the wave velocity of anthracite samples. On the other hand, with the increase of gas pressure, adsorbed quantity of gas increases and adsorbed quantity of gas on the skeleton surface increases, which in turn leads to the decrease of solid skeleton strength. Ultimately, the velocities of the P and Swave decrease with the increase of gas pressure.
3.3. Anisotropy Characteristics of Velocity
It is known that with the increase of gas pressure, and of the coal samples decrease. Meanwhile, the velocity (P and Swaves) distribution of the coal samples exhibits different characteristics in the three directions. So, the influence of gas pressure on the ultrasonic velocity anisotropy of anthracite is analyzed in this section and the velocity anisotropy values of selected coal samples can be calculated with the following formulas [17]. where and denote the anisotropy values of velocities (Pwave and Swave, respectively). The results obtained are shown in Figure 7.
As can be seen from Figure 7, when the coal samples are under vacuum (negative pressure), the anisotropy between and is greater than those between and and and . Through Xray tomography of coal samples, the CT digital images of coal samples can be obtained in order to interpret the differences in the above directions [44, 45]. The test was carried out on Xradia 510 Versa highresolution threedimensional Xray microimaging system (3DXRM). The correlation between CT image thresholds from three views and three anisotropic values of Pwave velocity can be established; as shown in Figure 8, there is a negative correlation between them. It can be seen that there is a logarithmic negative correlation between them. The threshold of CT images from the and views shows that the average density of clays and pore fractures is the smallest, which leads to the maximum anisotropy between and . The main cause of the abovementioned directional differences may be the inconsistency between the clays and the pore fractures of the coal [14–19].
With the increase of gas pressure, the anisotropy of wave velocity of coal samples keeps the same difference as that of vacuum but decreases gradually on the whole and the decrease of Pwave velocity anisotropy is much larger than that of Swave velocity anisotropy. Specifically, the decreases of Pwave velocity anisotropy in the strike direction , the dip direction , and the vertical direction are 45.56%, 48.43%, and 53.91%, respectively, while the decreases of Swave velocity anisotropy are only 7.66% ( and ), 18.8% ( and ), and 17.77% ( and ), respectively. It can be concluded that the anisotropy of Pwave velocity decreases much more than that of the Swave, which indicates that the Pwave is more sensitive to gas pressure changes.
Therefore, the most possible cause is that the coal samples undergo adsorption due to the existence of fluid gas [37, 46]. As a result, the strength of the coal samples is weakened and the strong ultrasonic anisotropy of the coal samples is also gradually weakened under the action of the highpressure gas adsorption expansion.
4. Conclusions
Many achievements have been made in the ultrasonic elasticity test of singlephase solid coal seam. However, in the actual gas geological condition, coal seam is not a single solid medium but a twophase and twoporosity. So, the ultrasonic velocity and anisotropy of gasbearing coal twophase and twoporosity are studied in this paper. Relevant results can be mainly applied in seismic exploration of a highgas mine, which can provide theoretical guidance for the prediction and prevention of coal and gas disasters by identifying abnormal areas of gas enrichment in seismic exploration. Finally, the following conclusions can be drawn. (1)In the strike, dip, and vertical directions, there is a negative linear relationship between the ultrasonic velocity and gas pressure. It is manifested by the fact that the ultrasonic velocity (Pwave and Swave) decreases with the increase of gas pressure. As for the cause of this phenomenon, it can be concluded that the increase of gas pressure leads to the increase of gas adsorption quantity on the skeleton surface, causing the decrease of skeleton strength, and resulting in the decrease of Pwave and Swave velocities propagating in the solid skeleton of gasbearing coal samples. Moreover, the correlation coefficient between the ultrasonic velocity and the gas concentration in the vertical direction is significantly higher than that in the strike direction and the dip direction(2)The degree of Swave anisotropy is greater than that of the Pwave. In addition, is greater than and ; is greater than and . With the increase of gas pressure, the anisotropy of velocities (P and Swaves) of coal samples decreases stepwise as a whole(3)The decrease in Pwave velocity and its anisotropy is greater than that in the Swave, which indicates that Pwave velocity is more sensitive to gas pressure changes
In the actual seismic exploration, under the constraints of drilling and logging, the above laws of the ultrasonic anisotropy of the coal samples affected by gas may provide some theoretical guidance for the prevention of gas disasters.
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request. The data of this manuscript is based on previous studies and obtained through experiments in the laboratory. Therefore, the data in this paper are all firsthand data and the data are guaranteed to be true and reliable.
Conflicts of Interest
The authors declare no conflict of interest.
Acknowledgments
This paper is supported by the National Natural Science Foundation of China (nos. 41604082 and 51734009), the Independent Innovation Project for Double Firstlevel Construction (China University of Mining and Technology) (no. 2018ZZCX04) and the National Key R&D Program of China (no. 2018YFC0807802).
Supplementary Materials
Table 4: (Section 3.3 of the corresponding manuscript, Figure 7). (Supplementary Materials)
References
 J. Sobczyk, “A comparison of the influence of adsorbed gases on gas stresses leading to coal and gas outburst,” Fuel, vol. 115, no. 2, pp. 288–294, 2014. View at: Publisher Site  Google Scholar
 X. Xu, R. Zhang, F. Dai, B. Yu, M. Gao, and Y. Zhang, “Effect of coal and rock characteristics on ultrasonic velocity,” Journal of China Coal Society, vol. 40, no. 4, pp. 793–800, 2015. View at: Google Scholar
 X. Liu, X. Wang, E. Wang, Z. Liu, and X. Xu, “Study on ultrasonic response to mechanical structure of coal under loading and unloading condition,” Shock and Vibration, vol. 2017, Article ID 7643451, 12 pages, 2017. View at: Publisher Site  Google Scholar
 Y. Chen, T. F. Huang, and E. R. Liu, Rock Physics, Press of University of Science and Technology of China, Hefei, China, 2009.
 State Administration of Work Safety, National Coal Mine Safety Administration, regulations on prevention and control of coal and gas outburst, China Coal Industry Publishing House, Beijing, China, 2009.
 N. I. Aziz and W. MingLi, “The effect of sorbed gas on the strength of coal – an experimental study,” Geotechnical & Geological Engineering, vol. 17, no. 3/4, pp. 387–402, 1999. View at: Publisher Site  Google Scholar
 S. Wang, D. Elsworth, and J. Liu, “Mechanical behavior of methane infiltrated coal: the roles of gas desorption, stress level and loading rate,” Rock Mechanics and Rock Engineering, vol. 46, no. 5, pp. 945–958, 2013. View at: Publisher Site  Google Scholar
 L. Zhang, N. Aziz, T. Ren, J. Nemcik, and S. Tu, “Influence of coal particle size on coal adsorption and desorption characteristics,” Archives of Mining Sciences, vol. 59, no. 3, pp. 807–820, 2014. View at: Publisher Site  Google Scholar
 S. D. Liu, Q. F. Zhao, P. S. Zhang, and L. Q. Guo, “Test and research on relationship between seam gas features and vibration wave parameters,” Coal Science and Technology, vol. 33, no. 11, pp. 33–36, 2005. View at: Google Scholar
 X.P. Chen, Q. Huo, J. Lin et al., “The inverse correlations between methane content and elastic parameters of coalbed methane reservoirs,” Geophysics, vol. 78, no. 4, pp. D237–D248, 2013. View at: Publisher Site  Google Scholar
 L. Mei, G. Jingwei, Y. Guangming, and L. Jiandong, “Application of seismic anisotropy caused by fissures in coal seams to the detection of coalbed methane reservoirs,” Acta Geologica Sinica  English Edition, vol. 74, no. 2, pp. 425–428, 2000. View at: Publisher Site  Google Scholar
 A. Morcote, G. Mavko, and M. Prasad, “Dynamic elastic properties of coal,” Geophysics, vol. 75, no. 6, pp. E227–E234, 2010. View at: Publisher Site  Google Scholar
 S. H. Dong, H. B. Wu, D. H. Li, and Y. P. Huang, “Experimental study of ultrasonic velocity and anisotropy in coal sample,” Journal of Seismic Exploration, vol. 25, no. 2, pp. 131–146, 2016. View at: Google Scholar
 Z. Wang, “Seismic anisotropy in sedimentary rocks, part 2: Laboratory data,” Geophysics, vol. 67, no. 5, pp. 1423–1440, 2002. View at: Publisher Site  Google Scholar
 H. Wu, S. Dong, D. Li, Y. Huang, and X. Qi, “Experimental study on dynamic elastic parameters of coal samples,” International Journal of Mining Science and Technology, vol. 25, no. 3, pp. 447–452, 2015. View at: Publisher Site  Google Scholar
 H. Chen, B. Jiang, T. Chen, S. Xu, and G. Zhu, “Experimental study on ultrasonic velocity and anisotropy of tectonically deformed coal,” International Journal of Coal Geology, vol. 179, pp. 242–252, 2017. View at: Publisher Site  Google Scholar
 Y. Wang, X. K. Xu, and Y. G. Zhang, “Characteristics of Pwave and Swave velocities and their relationships with density of six metamorphic kinds of coals,” Chinese Journal of Geophysics, vol. 55, no. 11, pp. 3754–3761, 2012. View at: Google Scholar
 S. H. Dong and W. P. Tao, “Test on elastic anisotropic coefficients of gas coal,” Chinese Journal of Geophysics, vol. 51, no. 3, pp. 671–677, 2008. View at: Publisher Site  Google Scholar
 Q. Zhao and S. L. Hao, “Anisotropy test instance of ultrasonic velocity and attenuation of coal sample,” Progress in Geophysics, vol. 21, no. 2, pp. 531–534, 2006. View at: Google Scholar
 Y. Wang, X. K. Xu, and D. Y. Yang, “Ultrasonic elastic characteristics of five kinds of metamorphic deformed coals under room temperature and pressure conditions,” Science China Earth Sciences, vol. 57, no. 9, pp. 2208–2216, 2014. View at: Publisher Site  Google Scholar
 R. Ulusay, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, Springer International Publishing, 2015.
 J. L. Wang, Y. P Long, and C. S. Zhu, The National Standards Compilation Group of Peoples Republic of China, GB/T 69492010 Determination of Apparent Relative Density of Coal, Standards Press of China, Beijing, China, 2011.
 L. T. Han, Y. J. Lin, and K. Q. Chen, The National Standards Compilation Group of Peoples Republic of China, GB/T 2122008 Industrial Analysis Method of Coal, Standards Press of China, Beijing, China, 2008.
 D. M. Ma, S. A. Zhang, and Y. B. Lin, “Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting,” Journal of the China Coal Society, vol. 36, no. 3, pp. 477–480, 2011. View at: Google Scholar
 R. Simm and M. Bacon, Seismic Amplitude: An interpreter's Handbook, Cambridge University Press, 2014. View at: Publisher Site
 G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, 2009. View at: Publisher Site
 R. Tonn, “The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods,” Geophysical Prospecting, vol. 39, no. 1, pp. 1–27, 1991. View at: Publisher Site  Google Scholar
 Y. Wang, J. Lu, Y. Shi, and C. Yang, “PSwave Q estimation based on the Pwave Q values,” Journal of Geophysics and Engineering, vol. 6, no. 4, pp. 386–389, 2009. View at: Publisher Site  Google Scholar
 Q. H. Zhang, H. P. Wang, S. C. Li et al., “Exploration of similar gas like methane in physical simulation test of coal and gas outburst,” Rock and Soil Mechanics, vol. 38, no. 2, pp. 479–486, 2017. View at: Google Scholar
 S. Ottiger, R. Pini, G. Storti, and M. Mazzotti, “Measuring and modeling the competitive adsorption of CO_{2}, CH_{4}, and N_{2} on a dry coal,” Langmuir, vol. 24, no. 17, pp. 9531–9540, 2008. View at: Publisher Site  Google Scholar
 Z. Wang, “Fundamentals of seismic rock physics,” Geophysics, vol. 66, no. 2, pp. 398–412, 2001. View at: Publisher Site  Google Scholar
 S. Peng, H. Chen, R. Yang, Y. Gao, and X. Chen, “Factors facilitating or limiting the use of AVO for coalbed methane,” Geophysics, vol. 71, no. 4, pp. C49–C56, 2006. View at: Publisher Site  Google Scholar
 X. C. Li, B. S. Nie, X. Q. He, X. Zhang, and T. Yang, “Influence of gas adsorption on coal body,” Journal of China Coal Society, vol. 36, no. 12, pp. 2035–2038, 2011. View at: Google Scholar
 H. Wang, J. Pan, S. Wang, and H. Zhu, “Relationship between macrofracture density, Pwave velocity, and permeability of coal,” Journal of Applied Geophysics, vol. 117, pp. 111–117, 2015. View at: Publisher Site  Google Scholar
 Y. G. Wang, M. G. Li, B. B. Chen, and S. H. Dai, “Experimental study on ultrasonic wave characteristics of coal samples under dry and water saturated conditions,” Journal of China Coal Society, vol. 40, no. 10, pp. 2445–2450, 2015. View at: Google Scholar
 Y. G. Wang, T. T. Yang, and Q. Y. Wang, “Study on ultrasonic propagation characteristics in coal samples,” China Safety Science Journal, vol. 27, no. 12, pp. 68–73, 2017. View at: Google Scholar
 X. Nie, J. Chen, Y. Cao, D. Gong, and H. Deng, “Analysis of coal swelling deformation caused by carbon dioxide adsorption based on Xray computed tomography,” Geofluids, vol. 2018, Article ID 6939827, 11 pages, 2018. View at: Publisher Site  Google Scholar
 Y. Zhang, M. Lebedev, M. Sarmadivaleh, A. Barifcani, and S. Iglauer, “Swellinginduced changes in coal microstructure due to supercritical CO_{2} injection,” Geophysical Research Letters, vol. 43, no. 17, pp. 9077–9083, 2016. View at: Publisher Site  Google Scholar
 S. Day, R. Fry, and R. Sakurovs, “Swelling of Australian coals in supercritical CO_{2},” International Journal of Coal Geology, vol. 74, no. 1, pp. 41–52, 2008. View at: Publisher Site  Google Scholar
 Z. G. Zhang, S. G. Cao, and P. Guo, “Comparison of the deformation characteristics of coal in gas adsorptiondesorption process for raw and briquette coals,” Journal of China University of Mining & Technology, vol. 43, no. 3, pp. 388–394, 2014. View at: Google Scholar
 Y. A. Wang and Y. M. Tao, “Adsorption deformation and adsorption deformation force of coal,” Coal Mine Safety, vol. 6, pp. 19–26, 1993. View at: Google Scholar
 Y. Wu, J. Liu, D. Elsworth, Z. Chen, L. Connell, and Z. Pan, “Dual poroelastic response of a coal seam to CO_{2} injection,” International Journal of Greenhouse Gas Control, vol. 4, no. 4, pp. 668–678, 2010. View at: Publisher Site  Google Scholar
 J. G. Berryman and H. F. Wang, “Elastic wave propagation and attenuation in a doubleporosity dualpermeability medium,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 12, pp. 63–78, 2000. View at: Publisher Site  Google Scholar
 L. Pimienta, L. Esteban, J. Sarout et al., “Supercritical CO_{2} injection and residence time in fluidsaturated rocks: evidence for calcite dissolution and effects on rock integrity,” International Journal of Greenhouse Gas Control, vol. 67, pp. 31–48, 2017. View at: Publisher Site  Google Scholar
 G. Wang, J. N. Shen, X. Y. Chu, X. Y. Cao, C. H. Jiang, and X. H. Zhou, “Characterization and analysis of pores and fissures of highrank coal based on CT three dimensional reconstruction,” Journal of China Coal Society, vol. 42, no. 8, pp. 2074–2080, 2017. View at: Google Scholar
 Y. B. Liu, S. G. Cao, Y. Li et al., “Experimental study of swelling deformation effect of coal induced by gas adsorption,” Chinese Journal of Rock Mechanics and Engineering, vol. 29, no. 12, pp. 2484–2491, 2010. View at: Google Scholar
Copyright
Copyright © 2019 Bo Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.