Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2012 (2012), Article ID 362536, 8 pages
http://dx.doi.org/10.1155/2012/362536
Research Article

Does Cisapride, as a 5HT4 Receptor Agonist, Aggravate the Severity of TNBS-Induced Colitis in Rat?

1Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8146-73461, Iran
2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8146-73461, Iran
3Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8146-73461, Iran
4Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz 8146-73461, Iran
5Islamic Azad University, Qazvin Branch, Qazvin 8146-73461, Iran

Received 31 May 2012; Revised 9 June 2012; Accepted 9 June 2012

Academic Editor: A. Andoh

Copyright © 2012 Azadeh Motavallian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. E. Sands, “Therapy of inflammatory bowel disease,” Gastroenterology, vol. 118, no. 2, pp. S68–S82, 2000. View at Google Scholar · View at Scopus
  2. D. K. Podolsky, “Inflammatory bowel disease,” The New England Journal of Medicine, vol. 347, pp. 417–429, 2002. View at Google Scholar
  3. D. C. Baumgart and W. J. Sandborn, “Inflammatory bowel disease: clinical aspects and established and evolving therapies,” Lancet, vol. 369, no. 9573, pp. 1641–1657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Forbes, T. Murase, M. Yang et al., “Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase,” Journal of Immunology, vol. 172, no. 9, pp. 5664–5675, 2004. View at Google Scholar · View at Scopus
  5. M. B. Grisham, “Molecular and cellular aspects of intestinal inflammation: clinical implications in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 1, pp. 1–14, 2000. View at Google Scholar
  6. L. Langmead and D. S. Rampton, “Review article: complementary and alternative therapies for inflammatory bowel disease,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 3, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Cloëz-Tayarani, A. F. Petit-Bertron, H. D. Venters, and J. M. Cavaillon, “Differential effect of serotonin on cytokine production in lipopolysaccharide-stimulated human peripheral blood mononuclear cells: involvement of 5-hydroxytryptamine2A receptors,” International Immunology, vol. 15, no. 2, pp. 233–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Y. Kim and M. Camilleri, “Serotonin: a mediator of the brain-gut connection,” American Journal of Gastroenterology, vol. 95, no. 10, pp. 2704–2709, 2000. View at Google Scholar · View at Scopus
  9. M. D. Gershon and J. Tack, “The serotonin signaling system: from basic understanding to drug development for functional GI disorders,” Gastroenterology, vol. 132, no. 1, pp. 397–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. M. Costedio, N. Hyman, and G. M. Mawe, “Serotonin and its role in colonic function and in gastrointestinal disorders,” Diseases of the Colon and Rectum, vol. 50, no. 3, pp. 376–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. G. Kris, “Ondansetron: a specific serotonin antagonist for the prevention of chemotherapy-induced vomiting,” Important Advances in Oncology, pp. 165–177, 1994. View at Google Scholar · View at Scopus
  12. F. De Ponti, “Pharmacology of serotonin: what a clinician should know,” Gut, vol. 53, no. 10, pp. 1520–1535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. G. J. McCleane, R. Suzuki, and A. H. Dickenson, “Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study,” Anesthesia and Analgesia, vol. 97, no. 5, pp. 1474–1478, 2003. View at Google Scholar · View at Scopus
  14. P. Hrycaj, “Serotonin type 3 receptor antagonist tropisetron in the treatment of chronic inflammatory rheumatic conditions—preliminary clinical experience,” Scandinavian Journal of Rheumatology, vol. 33, no. 119, pp. 55–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Motavallian-Naeini, S. Andalib, M. Rabbani, P. Mahzouni, M. Afsharipour, and M. Minaiyan, “Validation and optimization of experimental colitis induction in rats using 2,4, 6-trinitrobenzene sulfonic acid,” Research in Pharmaceutical Sciences, vol. 7, no. 3, pp. 159–169, 2012. View at Google Scholar
  16. D. R. Linden, J. X. Chen, M. D. Gershon, K. A. Sharkey, and G. M. Mawe, “Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis,” American Journal of Physiology, vol. 285, no. 1, pp. G207–G216, 2003. View at Google Scholar · View at Scopus
  17. J. M. Hoffman, K. Tyler, S. J. MacEachern et al., “Activation of colonic mucosal 5-HT 4 receptors accelerates propulsive motility and inhibits visceral hypersensitivity,” Gastroenterology, vol. 142, no. 4, pp. 844–854, 2012. View at Publisher · View at Google Scholar
  18. M. D. Coates, C. R. Mahoney, D. R. Linden et al., “Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome,” Gastroenterology, vol. 126, no. 7, pp. 1657–1664, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. L. Fiebich, R. S. Akundi, M. Seidel et al., “Expression of 5-HT3A receptors in cells of the immune system,” Scandinavian Journal of Rheumatology, vol. 33, no. 119, pp. 9–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Stefulj, B. Jernej, L. Cicin-Sain, I. Rinner, and K. Schauenstein, “mRNA expression of serotonin receptors in cells of the immune tissues of the rat,” Brain, Behavior, and Immunity, vol. 14, no. 3, pp. 219–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Ghia, N. Li, H. Wang et al., “Serotonin has a key role in pathogenesis of experimental colitis,” Gastroenterology, vol. 137, no. 5, pp. 1649–1660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Motavallian-Naeini, M. Minaiyan, M. Rabbani, and P. Mahzuni, “Anti-inflammatory effect of ondansetron through 5HT3 receptors on TNBS-induced coloitis in rat,” Experimental and Clinical Sciences Journal, vol. 11, pp. 30–44, 2012. View at Google Scholar
  23. M. Minaiyan, A. R. Ghannadi, M. Etemad, and P. Mahzouni, “A study of the effects of Cydonia oblonga Miller (Quince) on TNBS-induced ulcerative colitis in rats,” Research in Pharmaceutical Sciences, vol. 7, no. 2, pp. 103–110, 2012. View at Google Scholar
  24. A. Tari, K. Sumii, M. Yoshihara et al., “Effect of cisapride on the concentrations of β-endorphinlike immunoreactivity and substance P-like immunoreactivity in the rat gastrointestinal tract,” Biochemical and Biophysical Research Communications, vol. 147, no. 3, pp. 1162–1169, 1987. View at Google Scholar · View at Scopus
  25. E. García-Garayoa, A. Monge, J. Roca, J. Del Río, and B. Lasheras, “VB20B7, a novel 5-HT-ergic agent with gastrokinetic activity—II. Evaluation of the gastroprokinetic activity in rats and dogs,” Journal of Pharmacy and Pharmacology, vol. 49, no. 1, pp. 66–73, 1997. View at Google Scholar · View at Scopus
  26. G. P. Morris, P. L. Beck, M. S. Herridge, W. T. Depew, M. R. Szewczuk, and J. L. Wallace, “Hapten-induced model of chronic inflammation and ulceration in the rat colon,” Gastroenterology, vol. 96, no. 3, pp. 795–803, 1989. View at Google Scholar · View at Scopus
  27. I. Ballester, A. Daddaoua, R. López-Posadas et al., “The bisphosphonate alendronate improves the damage associated with trinitrobenzenesulfonic acid-induced colitis in rats,” British Journal of Pharmacology, vol. 151, no. 2, pp. 206–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. S. Cooper, S. N. S. Murthy, R. S. Shah, and D. J. Sedergran, “Clinicopathologic study of dextran sulfate sodium experimental murine colitis,” Laboratory Investigation, vol. 69, no. 2, pp. 238–250, 1993. View at Google Scholar · View at Scopus
  29. L. A. Dieleman, M. J. H. J. Palmen, H. Akol et al., “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 385–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. P. P. Bradley, D. A. Priebat, R. D. Christensen, and G. Rothstein, “Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker,” Journal of Investigative Dermatology, vol. 78, no. 3, pp. 206–209, 1982. View at Google Scholar · View at Scopus
  31. V. Pereira Nacife, M. de Nazaré Correia Soeiro, R. Novaes Gomes, H. D'Avila, H. Caire Castro-Faria Neto, and M. de Nazareth Leal Meirelles, “Morphological and biochemical characterization of macrophages activated by carrageenan and lipopolysaccharide in vivo,” Cell Structure and Function, vol. 29, no. 2, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Zheng, Z. Q. Gao, and S. X. Wang, “A chronic ulcerative colitis model in rats,” World Journal of Gastroenterology, vol. 6, no. 1, pp. 150–152, 2000. View at Google Scholar · View at Scopus
  33. T. Dohi and K. Fujihashi, “Type 1 and 2 T helper cell-mediated colitis,” Current Opinion in Gastroenterology, vol. 22, no. 6, pp. 651–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. N. Ajuebor, C. M. Hogaboam, S. L. Kunkel, A. E. I. Proudfoot, and J. L. Wallace, “The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat,” Journal of Immunology, vol. 166, no. 1, pp. 552–558, 2001. View at Google Scholar · View at Scopus
  35. I. Cloëz-Tayarani and J. P. Changeux, “Nicotine and serotonin in immune regulation and inflammatory processes: a perspective,” Journal of Leukocyte Biology, vol. 81, no. 3, pp. 599–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Esmaily, A. Hosseini-Tabatabaei, R. Rahimian et al., “On the benefits of silymarin in murine colitis by improving balance of destructive cytokines and reduction of toxic stress in the bowel cells,” Central European Journal of Biology, vol. 4, no. 2, pp. 204–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Maunder, “Mediators of stress effects in inflammatory bowel disease: not the usual suspects,” Journal of Psychosomatic Research, vol. 48, no. 6, pp. 569–577, 2000. View at Publisher · View at Google Scholar · View at Scopus