Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2014, Article ID 728572, 9 pages
http://dx.doi.org/10.1155/2014/728572
Research Article

A Gastrointestinal Electrical Stimulation System Based on Transcutaneous Power Transmission Technology

1Institute of Precise Engineering and Intelligent Microsystems, Shanghai Jiaotong University, Shanghai 200240, China
2Department of General Surgery, Shanghai Pudong New Area People’s Hospital, Shanghai 201299, China

Received 20 February 2014; Revised 9 April 2014; Accepted 9 April 2014; Published 25 June 2014

Academic Editor: Sergio Morini

Copyright © 2014 Bingquan Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dudekula, M. O'Connell, and K. Bielefeldt, “Hospitalizations and testing in gastroparesis,” Journal of Gastroenterology and Hepatology, vol. 26, no. 8, pp. 1275–1282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Aro, N. J. Talley, L. Agréus et al., “Functional dyspepsia impairs quality of life in the adult population,” Alimentary Pharmacology and Therapeutics, vol. 33, no. 11, pp. 1215–1224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Bilgutay, R. Wingrove, W. O. Griffen, R. C. Bonnabeau Jr., and C. W. Lillehei, “Gastro-intestinal pacing: a new concept in the treatment of Ileus,” Annals of Surgery, vol. 158, pp. 338–348, 1963. View at Google Scholar · View at Scopus
  4. W. L. Hasler, “Methods of gastric electrical stimulation and pacing: a review of their benefits and mechanisms of action in gastroparesis and obesity,” Neurogastroenterology and Motility, vol. 21, no. 3, pp. 229–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhao, J. Yin, J. Chen et al., “Inhibitory effects and mechanisms of intestinal electrical stimulation on gastric tone, antral contractions, pyloric tone, and gastric emptying in dogs,” American Journal of Physiology, vol. 296, no. 1, pp. R36–R42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Gourcerol, U. Chaput, I. LeBlanc et al., “Gastric electrical stimulation in intractable nausea and vomiting: assessment of predictive factors of favorable outcomes,” Journal of the American College of Surgeons, vol. 209, no. 2, pp. 215–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Amaris, P. Z. Rashev, M. P. Mintchev, and K. L. Bowes, “Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation,” Gut, vol. 50, no. 4, pp. 475–479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Bertschi, V. Schlageter, J.-M. Vesin et al., “Direct electrical stimulation using a battery-operated device for induction and modulation of colonic contractions in pigs,” Annals of Biomedical Engineering, vol. 38, no. 7, pp. 2398–2405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. D. S. Hirst, A. P. Garcia-Londoño, and F. R. Edwards, “Propagation of slow waves in the guinea-pig gastric antrum,” Journal of Physiology, vol. 571, no. 1, pp. 165–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yin and J. D. Z. Chen, “Mechanisms and potential applications of intestinal electrical stimulation,” Digestive Diseases and Sciences, vol. 55, no. 5, pp. 1208–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhang and J. D. Z. Chen, “Systematic review: applications and future of gastric electrical stimulation,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 7, pp. 991–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. N. Laskovski and M. R. Yuce, “Class-E self-oscillation for the transmission of wireless power to implants,” Sensors and Actuators A, vol. 171, no. 2, pp. 391–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Si, A. P. Hu, S. Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 1, pp. 22–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Jia, G. Yan, H. Liu, Z. Wang, P. Jiang, and Y. Shi, “The optimization of wireless power transmission: design and realization,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 8, no. 3, pp. 337–347, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. P. Theodoridis and S. V. Mollov, “Distant energy transfer for artificial human implants,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1931–1938, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. T. D. Dissanayake, A. P. Hu, S. Malpas et al., “Experimental study of a TET system for implantable biomedical devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 6, pp. 370–378, 2009. View at Publisher · View at Google Scholar · View at Scopus