Table of Contents Author Guidelines Submit a Manuscript
Gastroenterology Research and Practice
Volume 2014, Article ID 803185, 6 pages
http://dx.doi.org/10.1155/2014/803185
Review Article

Gut Microbiota in HIV Infection: Implication for Disease Progression and Management

1Hedmark University College, 2306 Hamar, Norway
2Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway

Received 29 March 2014; Revised 28 May 2014; Accepted 29 May 2014; Published 12 June 2014

Academic Editor: Serena Schippa

Copyright © 2014 Felix Chinweije Nwosu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. G. Sandler and D. C. Douek, “Microbial translocation in HIV infection: causes, consequences and treatment opportunities,” Nature Reviews Microbiology, vol. 10, no. 9, pp. 655–666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. C. T. Costiniuk and J. B. Angel, “Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity,” Mucosal Immunology, vol. 5, no. 6, pp. 596–604, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mehandru, M. A. Poles, K. Tenner-Racz et al., “Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection,” Journal of Virology, vol. 81, no. 2, pp. 599–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Siewe and A. Landay, “Key concepts in the early immunology of HIV-1 infection,” Current Infectious Disease Reports, vol. 14, no. 1, pp. 102–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Caradonna, L. Amati, T. Magrone, N. M. Pellegrino, E. Jirillo, and D. Caccavo, “Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance,” Journal of Endotoxin Research, vol. 6, no. 3, pp. 205–214, 2000. View at Google Scholar · View at Scopus
  6. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. L. Greer, A. Morgun, and N. Shulzhenko, “Bridging immunity and lipid metabolism by gut microbiota,” Journal of Allergy and Clinical Immunology, vol. 132, no. 2, pp. 253–262, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Merlini, F. Bai, G. M. Bellistrì, C. Tincati, A. d'Arminio Monforte, and G. Marchetti, “Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy,” PLoS ONE, vol. 6, no. 4, Article ID e18580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Ellis, Z.-M. Ma, S. K. Mann et al., “Molecular characterization of stool microbiota in hiv-infected subjects by panbacterial and order-level 16s ribosomal DNA (rDNA) quantification and correlations with immune activation,” Journal of Acquired Immune Deficiency Syndromes, vol. 57, no. 5, pp. 363–370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. View at Publisher · View at Google Scholar
  12. J. M. Brenchley, D. A. Price, T. W. Schacker et al., “Microbial translocation is a cause of systemic immune activation in chronic HIV infection,” Nature Medicine, vol. 12, no. 12, pp. 1365–1371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Klatt, N. T. Funderburg, and J. M. Brenchley, “Microbial translocation, immune activation, and HIV disease,” Trends in Microbiology, vol. 21, no. 1, pp. 6–13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wilks and T. Golovkina, “Influence of microbiota on viral infections,” PLoS Pathogens, vol. 8, no. 5, Article ID e1002681, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Cohen, G. M. Shaw, A. J. McMichael, and B. F. Haynes, “Acute HIV-1 infection,” The New England Journal of Medicine, vol. 364, no. 20, pp. 1943–1954, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Powers, A. C. Ghani, W. C. Miller et al., “The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study,” The Lancet, vol. 378, no. 9787, pp. 256–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. V. Baker, G. Peng, J. Rapkin et al., “CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection,” AIDS, vol. 22, no. 7, pp. 841–848, 2008. View at Publisher · View at Google Scholar
  18. I. W. Manner, M. Baekken, D. Kvale et al., “Markers of microbial translocation predict hypertension in HIV-infected individuals,” HIV Medicine, vol. 14, no. 6, pp. 354–361, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Marchetti, A. Cozzi-Lepri, E. Merlini et al., “Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count,” AIDS, vol. 25, no. 11, pp. 1385–1394, 2011. View at Publisher · View at Google Scholar
  20. E. A. Mutlu, A. Keshavarzian, J. Losurdo et al., “A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects,” PLoS Pathogens, vol. 10, no. 2, Article ID e1003829, 2014. View at Google Scholar
  21. A. Gori, C. Tincati, G. Rizzardini et al., “Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis,” Journal of Clinical Microbiology, vol. 46, no. 2, pp. 757–758, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Pallikkuth, L. Micci, Z. S. Ende et al., “Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21,” PLoS Pathogens, vol. 9, no. 7, Article ID e1003471, 2013. View at Publisher · View at Google Scholar
  23. J. Pérez-Santiago, S. Gianella, M. Massanella et al., “Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection,” AIDS, vol. 27, no. 12, pp. 1921–1931, 2013. View at Publisher · View at Google Scholar
  24. A. T. Dang, S. Cotton, S. Sankaran-Walters et al., “Evidence of an increased pathogenic footprint in the lingual microbiome of untreated HIV infected patients,” BMC Microbiology, vol. 12, article 153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Vujkovic-Cvijin, R. M. Dunham, S. Iwai et al., “Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism,” Science Translational Medicine, vol. 5, no. 193, Article ID 193ra91, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. Redd, R. H. Gray, and T. C. Quinn, “Is microbial translocation a cause or consequence of HIV disease progression?” Journal of Infectious Diseases, vol. 203, no. 5, pp. 744–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Redd, K. P. Eaton, X. Kong et al., “C-reactive protein levels increase during HIV-1 disease progression in rakai, Uganda, despite the absence of microbial translocation,” Journal of Acquired Immune Deficiency Syndromes, vol. 54, no. 5, pp. 556–559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Cassol, S. Malfeld, P. Mahasha et al., “Persistent microbial translocation and immune activation in HIV-1-infected south africans receiving combination antiretroviral therapy,” Journal of Infectious Diseases, vol. 202, no. 5, pp. 723–733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Nowroozalizadeh, F. Månsson, Z. Da Silva et al., “Microbial translocation correlates with the severity of both HIV-1 and HIV-2 infections,” Journal of Infectious Diseases, vol. 201, no. 8, pp. 1150–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Brenchley, “Mucosal immunity in human and simian immunodeficiency lentivirus infections,” Mucosal Immunology, vol. 6, no. 4, pp. 657–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Marchetti, G. M. Bellistrì, E. Borghi et al., “Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy,” AIDS, vol. 22, no. 15, pp. 2035–2044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. V. Giorgi, L. E. Hultin, J. A. McKeating et al., “Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage,” Journal of Infectious Diseases, vol. 179, no. 4, pp. 859–870, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. P. W. Hunt, J. N. Martin, E. Sinclair et al., “T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency vires-infected patients with sustained viral suppression during antiretroviral therapy,” Journal of Infectious Diseases, vol. 187, no. 10, pp. 1534–1543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Jiang, M. M. Lederman, and P. Hunt, “Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection,” Journal of Infectious Diseases, vol. 199, pp. 1177–1185, 2009. View at Google Scholar
  35. P. W. Hunt, J. Brenchley, E. Sinclair et al., “Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy,” Journal of Infectious Diseases, vol. 197, no. 1, pp. 126–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Douek, “HIV disease progression: immune activation, microbes, and a leaky gut,” Topics in HIV Medicine, vol. 15, no. 4, pp. 114–117, 2007. View at Google Scholar · View at Scopus
  37. F. Fitzgerald et al., “Short communication: evidence that microbial translocation occurs in HIV-infected children in the United Kingdom,” AIDS Research and Human Retroviruses, vol. 29, no. 12, pp. 1589–1593, 2013. View at Publisher · View at Google Scholar
  38. G. Marchetti, C. Tincati, and G. Silvestri, “Microbial translocation in the pathogenesis of HIV infection and AIDS,” Clinical Microbiology Reviews, vol. 26, no. 1, pp. 2–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. M. E. Sanders, F. Guarner, R. Guerrant et al., “An update on the use and investigation of probiotics in health and disease,” Gut, vol. 62, no. 5, pp. 787–796, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. S. K. Mazmanian, H. L. Cui, A. O. Tzianabos, and D. L. Kasper, “An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system,” Cell, vol. 122, no. 1, pp. 107–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Monachese, S. Cunningham-Rundles, M. A. Diaz et al., “Probiotics and prebiotics to combat enteric infections and HIV in the developing world: a consensus report,” Gut microbes, vol. 2, no. 3, pp. 198–207, 2011. View at Google Scholar · View at Scopus
  42. A. Gori, G. Rizzardini, B. Van'T Land et al., “Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “cOPA” pilot randomized trial,” Mucosal Immunology, vol. 4, no. 5, pp. 554–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Hummelen, J. Changalucha, N. L. Butamanya et al., “Effect of 25 weeks probiotic supplementation on immune function of HIV patients,” Gut Microbes, vol. 2, no. 2, pp. 80–85, 2011. View at Google Scholar · View at Scopus
  44. C. Dai, D.-H. Zhao, and M. Jiang, “VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways,” International Journal of Molecular Medicine, vol. 29, no. 2, pp. 202–208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. L. Irvine, R. Hummelen, and S. Hekmat, “Probiotic yogurt consumption may improve gastrointestinal symptoms, productivity, and nutritional intake of people living with human immunodeficiency virus in Mwanza, Tanzania,” Nutrition Research, vol. 31, no. 12, pp. 875–881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. N. R. Klatt, L. A. Canary, X. Sun et al., “Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques,” Journal of Clinical Investigation, vol. 123, no. 2, pp. 903–907, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Schunter, H. Chu, T. L. Hayes et al., “Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection,” BMC Complementary and Alternative Medicine, vol. 12, article 84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Cahn, A. L. Pozniak, H. Mingrone et al., “Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study,” The Lancet, vol. 382, no. 9893, pp. 700–708, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. D. M. Asmuth, Z.-M. Ma, A. Albanese et al., “Oral serum-derived bovine immunoglobulin improves duodenal immune reconstitution and absorption function in patients with HIV enteropathy,” AIDS, vol. 27, no. 14, pp. 2207–2217, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. S. G. Deeks, S. R. Lewin, and D. V. Havlir, “The end of AIDS: HIV infection as a chronic disease,” The Lancet, vol. 382, no. 9903, pp. 1525–1533, 2013. View at Publisher · View at Google Scholar
  51. S. Mandalia, S. J. Westrop, E. J. Beck, M. Nelson, B. G. Gazzard, and N. Imami, “Are long-term non-progressors very slow progressors? insights from the chelsea and westminster HIV cohort, 1988-2010,” PLoS ONE, vol. 7, no. 2, Article ID e29844, 2012. View at Publisher · View at Google Scholar · View at Scopus