Table of Contents Author Guidelines Submit a Manuscript
HPB Surgery
Volume 2012, Article ID 480893, 10 pages
http://dx.doi.org/10.1155/2012/480893
Research Article

ICAM-1 Upregulation in Ethanol-Induced Fatty Murine Livers Promotes Injury and Sinusoidal Leukocyte Adherence after Transplantation

1Center for Cell Death, Injury & Regeneration, Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun Street, MSC 140, Charleston, SC 29425, USA
2Department of Surgery, Medical University of South Carolina, 280 Calhoun Street, MSC 140, Charleston, SC 29425, USA
3Department of Cell & Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
4Department of Medicine, University of Regensburg, 93053 Regensburg, Germany
5Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 280 Calhoun Street, MSC 140, Charleston, SC 29425, USA

Received 30 January 2012; Accepted 30 April 2012

Academic Editor: Peter Schemmer

Copyright © 2012 Tom P. Theruvath et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Marsman, R. H. Wiesner, L. Rodriguez et al., “Use of fatty donor liver is associated with diminished early patient and graft survival,” Transplantation, vol. 62, no. 9, pp. 1246–1251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. L. McCormack, H. Petrowsky, W. Jochum, B. Mullhaupt, M. Weber, and P. A. Clavien, “Use of severely steatotic grafts in liver transplantation: a matched case-control study,” Annals of Surgery, vol. 246, no. 6, pp. 940–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Caldwell-Kenkel, R. T. Currin, Y. Tanaka, R. G. Thurman, and J. J. Lemasters, “Reperfusion injury to endothelial cells following cold ischemic storage of rat livers,” Hepatology, vol. 10, no. 3, pp. 292–299, 1989. View at Google Scholar · View at Scopus
  4. J. S. Kim, L. He, and J. J. Lemasters, “Mitochondrial permeability transition: a common pathway to necrosis and apoptosis,” Biochemical and Biophysical Research Communications, vol. 304, no. 3, pp. 463–470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. A. Rüdiger, R. Graf, and P. A. Clavien, “Liver ischemia: apoptosis as a central mechanism of injury,” Journal of Investigative Surgery, vol. 16, no. 3, pp. 149–159, 2003. View at Google Scholar · View at Scopus
  6. Y. Takei, I. Marzi, W. S. Gao, G. J. Gores, J. J. Lemasters, and R. G. Thurman, “Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat,” Transplantation, vol. 51, no. 5, pp. 959–965, 1991. View at Google Scholar · View at Scopus
  7. H. Jaeschke, A. Farhood, and C. W. Smith, “Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo,” The FASEB Journal, vol. 4, no. 15, pp. 3355–3359, 1990. View at Google Scholar · View at Scopus
  8. H. Jaeschke, “Mechanisms of reperfusion injury after warm ischemia of the liver,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 5, no. 4, pp. 402–408, 1998. View at Google Scholar · View at Scopus
  9. A. P. Bautista, “Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver,” Hepatology, vol. 25, no. 2, pp. 335–342, 1997. View at Google Scholar · View at Scopus
  10. J. S. Gujral, J. Liu, A. Farhood, J. A. Hinson, and H. Jaeschke, “Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice,” American Journal of Physiology, vol. 286, no. 3, pp. G499–G507, 2004. View at Google Scholar · View at Scopus
  11. H. Jaeschke, A. Farhood, and C. W. Smith, “Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism,” American Journal of Physiology, vol. 261, no. 6, part 1, pp. G1051–G1056, 1991. View at Google Scholar · View at Scopus
  12. R. G. Molnar, P. Wang, A. Ayala, P. E. Ganey, R. A. Roth, and I. H. Chaudry, “The role of neutrophils in producing hepatocellular dysfunction during the hyperdynamic stage of sepsis in rats,” Journal of Surgical Research, vol. 73, no. 2, pp. 117–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Nagendra, J. K. Mickelson, and C. W. Smith, “CD18 integrin and CD54-dependent neutrophil adhesion to cytokine-stimulated human hepatocytes,” American Journal of Physiology, vol. 272, no. 3, part 1, pp. G408–G416, 1997. View at Google Scholar · View at Scopus
  14. H. Jaeschke, Y. S. Ho, M. A. Fisher, J. A. Lawson, and A. Farhood, “Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress,” Hepatology, vol. 29, no. 2, pp. 443–450, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Rentsch, S. Post, P. Palma, G. Lang, M. D. Menger, and K. Messmer, “Anti-ICAM-1 blockade reduces postsinusoidal WBC adherence following cold ischemia and reperfusion, but does not improve early graft function in rat liver transplantation,” Journal of Hepatology, vol. 32, no. 5, pp. 821–828, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. T. P. Theruvath, Z. Zhong, R. T. Currin, V. K. Ramshesh, and J. J. Lemasters, “Endothelial nitric oxide synthase protects transplanted mouse livers against storage/reperfusion injury: role of vasodilatory and innate immunity pathways,” Transplantation Proceedings, vol. 38, no. 10, pp. 3351–3357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Google Scholar · View at Scopus
  18. B. K. Gunawan, Z. X. Liu, D. Han, N. Hanawa, W. A. Gaarde, and N. Kaplowitz, “c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity,” Gastroenterology, vol. 131, no. 1, pp. 165–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Wang, R. Singh, J. H. Lefkowitch, R. M. Rigoli, and M. J. Czaja, “Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway,” The Journal of Biological Chemistry, vol. 281, no. 22, pp. 15258–15267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Ylikahri, “Metabolic effects of alcohol,” Duodecim, vol. 88, no. 3, pp. 247–257, 1972. View at Google Scholar · View at Scopus
  21. Z. Zhong, H. Connor, R. P. Mason et al., “Destruction of Kupffer cells increases survival and reduces graft injury after transplantation of fatty livers from ethanol-treated rats,” Liver Transplantation and Surgery, vol. 2, no. 5, pp. 383–387, 1996. View at Google Scholar · View at Scopus
  22. R. Scheig, “Effects of ethanol on the liver,” American Journal of Clinical Nutrition, vol. 23, no. 4, pp. 467–473, 1970. View at Google Scholar · View at Scopus
  23. S. Marubayashi, Y. Oshiro, T. Maeda et al., “Protective effect of monoclonal antibodies to adhesion molecules on rat liver ischemia-reperfusion injury,” Surgery, vol. 122, no. 1, pp. 45–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. K. E. Caputo and D. A. Hammer, “Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion,” Biophysical Journal, vol. 96, no. 8, pp. 2989–3004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Jaeschke and J. J. Lemasters, “Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury,” Gastroenterology, vol. 125, no. 4, pp. 1246–1257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. Lemasters and R. G. Thurman, “Reperfusion injury after liver preservation for transplantation,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 327–338, 1997. View at Google Scholar · View at Scopus
  27. H. Jaeschke, C. V. Smith, and J. R. Mitchell, “Hypoxic damage generates reactive oxygen species in isolated perfused rat liver,” Biochemical and Biophysical Research Communications, vol. 150, no. 2, pp. 568–574, 1988. View at Google Scholar · View at Scopus
  28. M. Ozaki, S. S. Deshpande, P. Angkeow et al., “Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo,” The FASEB Journal, vol. 14, no. 2, pp. 418–429, 2000. View at Google Scholar · View at Scopus
  29. T. G. Lehmann, M. D. Wheeler, R. F. Schwabe et al., “Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat,” Hepatology, vol. 32, no. 6, pp. 1255–1264, 2000. View at Google Scholar · View at Scopus
  30. T. G. Lehmann, M. D. Wheeler, R. Schoonhoven, H. Bunzendahl, R. J. Samulski, and R. G. Thurman, “Delivery of Cu/Zn-superoxide dismutase genes with a viral vector minimizes liver injury and improves survival after liver transplantation in the rat,” Transplantation, vol. 69, no. 6, pp. 1051–1057, 2000. View at Google Scholar · View at Scopus
  31. T. G. Lehmann, M. D. Wheeler, M. Froh et al., “Effects of three superoxide dismutase genes delivered with an adenovirus on graft function after transplantation of fatty livers in the rat,” Transplantation, vol. 76, no. 1, pp. 28–37, 2003. View at Google Scholar · View at Scopus
  32. Z. Zhong and J. J. Lemasters, “Role of free radicals in failure of fatty liver grafts caused by ethanol,” Alcohol, vol. 34, no. 1, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. W. G. Siems, T. Grune, B. Beierl, H. Zollner, and H. Esterbauer, “The metabolism of 4-hydroxynonenal, a lipid peroxidation product, is dependent on tumor age in Ehrlich mouse ascites cells,” EXS, vol. 62, pp. 124–135, 1992. View at Google Scholar · View at Scopus
  34. J. J. Lemasters, “Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis,” Gastroenterology, vol. 129, no. 1, pp. 351–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. P. Theruvath, Z. Zhong, P. Pediaditakis et al., “Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition,” Hepatology, vol. 47, no. 1, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Zhong, G. E. Arteel, H. D. Connor et al., “Binge drinking disturbs hepatic microcirculation after transplantation: prevention with free radical scavengers,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 2, pp. 611–620, 1999. View at Google Scholar · View at Scopus
  37. T. P. Theruvath, Z. Zhong, V. K. Ramshesh, R. T. Currin, T. Karrasch, and J. J. Lemasters, “ICAM-1 upregulation in fatty livers of ethanol-treated donor mice promotes injury and sinusoidal leukocyte adherence after transplantation,” The FASEB Journal, vol. 21, article A1218, 2007. View at Google Scholar
  38. T. P. Theruvath, K. D. Chavin, Z. Zhong, and J. J. Lemasters, “ICAM-1 upregulation in alcohol-induced fatty mouse livers promotes reperfusion injury after tramsplantation through increased oxidative stress and downstream leukocyte adherence,” Journal of the American College of Surgeons, vol. 209, no. 3, supplement, p. S60, 2009. View at Google Scholar