Heteroatom Chemistry
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate29%
Submission to final decision45 days
Acceptance to publication48 days
CiteScore0.930
Impact Factor0.862

Understanding the Mechanism and Selectivities of the Reaction of Meta-Chloroperbenzoic Acid and Dibromocarbene with β-Himachalene: A DFT Study

Read the full article

 Journal profile

Heteroatom Chemistry publishes research on compounds containing main-group elements of groups 13 through 17 of the Periodic Table, with a fundamental focus on the reactivity of heteroatoms.

 Editor spotlight

Heteroatom Chemistry maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors expert and up-to-date in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Synthesis of Some Novel Fluorinated/Nonfluorinated α-Amino Acids, Bearing 3-Thioxo-5-oxo-1,2,4-triazin-6-yl and Steroidal Moieties, and Evaluation of Their Amylolytic Effects against Some Fungi, Part-II

Some new fluorinated/nonfluorinated α-amino acids bearing 3-thioxo-5-oxo-1,2,4-triazin-6-yl and steroidal moieties have been obtained from condensation of the corresponding amino-triazinones with the steroid (Epiandrosterone). This was followed by the addition of HCN and, finally, acidic hydrolysis. The structure of the targets was established from their elemental analysis and spectral data. The amylolytic activity of the new products was evaluated against some fungi.

Research Article

Synthesis of Organic Ligands via Reactions of 4-Benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione with N-Nucleophiles

The reaction of 4-benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione (1) with aminoheteroaryls, lamotrigine, 1,3-diaminoheteroaryls, dapsone, NH2R (hydroxylamine, DL-1-phenylethylamine, and metformin), and 4,4′-bipyridine in THF/H2O (1 : 1) at room temperature led to 3-N-phenylthiocarbamoyl-2-butenamides 25, while that with naphthylamines and 1,3-phenylenediamine in ethanol at high temperature led to 5-phenylamino-2,5-dihydrothiophene-2-ones 68 as organic ligands in the medium to good yields. These showed the nucleophilic attacks of N-nucleophiles, except primary aromatic amines, on thioester carboxyl group (C-2) of thiophene-2,3-dione ring 1. However, the nucleophilic attacks of primary aromatic amines on the carbonyl group (C-3) of thiophene-2,3-dione 1 occurred in the form of substituted thiophenes.

Research Article

Efficient ZrO(NO3)2.2H2O Catalyzed Synthesis of 1H-Indazolo[1,2-b] phthalazine-1,6,11(13H)-triones and Electronic Properties Analyses, Vibrational Frequencies, NMR Chemical Shift Analysis, MEP: A DFT Study

The synthesis of 1H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione derivatives, using one-pot three-component condensation reaction of 3-nitrophthalic anhydride, hydrazine monohydrate, dimedone, and aromatic aldehydes in the presence of ZrO(NO3)2.2H2O as the novel catalyst and in reflux conditions in EtOH was reported. Quantum theoretical calculations for three structures of compounds (5a, 5b, and 5c) were performed using the Hartree–Fock (HF) and density functional theory (DFT). From the optimized structure, geometric parameters were obtained and experimental measurements were compared with the calculated data. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, mass spectra, and elemental analyses. The IR spectra data and 1H NMR and 13C NMR chemical shift computations of the 1H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione derivatives in the ground state were calculated. Frontier molecular orbitals (FMOs), total density of states (DOS), thermodynamic parameters, and molecular electrostatic potential (MEP) of the title compounds were investigated by theoretical calculations. Molecular properties such as the ionization potential (I), electron affinity (A), chemical hardness (η), electronic chemical potential (µ), and electrophilicity (ω) were investigated for the structures. Thus, there was an excellent agreement between experimental and theoretical results.

Research Article

Dichlorophosphoranides Stabilized by Formamidinium Substituents

Dichlorophosphoranides featuring N,N-dimethyl-N′-arylformamidine substituents were isolated as individual compounds. Dichlorophosphoranide 9 was prepared by the multicomponent reaction of C-trimethylsilyl-N,N-dimethyl-N′-phenylformamidine and N,N-dimethyl-N′-phenylformamidine with phosphorus trichloride. Its molecular structure derived from a single-crystal X-ray diffraction was compared to the analogous dibromophosphoranide prepared previously by us by the reaction of phosphorus tribromide with N,N-dimethyl-N′-phenylformamidine. It was shown that a chlorophosphine featuring two N,N-dimethyl-N′-mesitylformamidine substituents reacted with hydrogen chloride to form dichlorophosphoranide 11. Its molecular structure was also determined by X-ray analysis and compared with that of closely related dichlorophosphoranide C.

Research Article

Synthesis of New Oxindoles and Determination of Their Antibacterial Properties

A versatile method for the synthesis of new oxindoles was developed by the reaction between substituted isatins and 5-aminopyrazoles. The reaction was carried out at room temperature in ethanol using p-toluenesulfonic acid as the catalyst. The products were obtained with acceptable to excellent yields (44–96%). Structures of the new compounds were unambiguously established by spectroscopic and analytical techniques. The antibacterial activity was determined by microdilution assays. Compounds 3b, 3e, and 3g showed antistaphylococcal activity, particularly compound 3e displayed a potent activity against the vancomycin intermediate Staphylococcus aureus (VISA). Compounds 3i, 3j, and 3o inhibited Neisseria gonorrhoeae growth.

Research Article

10H-Pyrazino[2,3-b][1,4]benzotellurazine, a Novel Tellurium-Containing Heterocyclic System

Condensation of 2,3-dichloropyrazine with 2-aminobenzenetellurole and 2-amino-5-methylbenzenetellurole, generated in situ by reduction of the corresponding ditellurides, resulted in the formation of novel 10H-pyrazino[2,3-b][1,4]benzotellurazine and its 7-methyl derivative. The products were purified via their well-crystallized 5,5-dibromo derivatives. X-ray crystallographic analysis of the title compound indicates that it has a pronounced V-shape and forms hydrogen-bonded dimers. Te, N-containing heterocycles have the potential of offering access to supramolecular assemblies.

Heteroatom Chemistry
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate29%
Submission to final decision45 days
Acceptance to publication48 days
CiteScore0.930
Impact Factor0.862
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.