Table of Contents Author Guidelines Submit a Manuscript
Infectious Diseases in Obstetrics and Gynecology
Volume 2012, Article ID 536037, 8 pages
http://dx.doi.org/10.1155/2012/536037
Review Article

Trichomoniasis and Lactoferrin: Future Prospects

1Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
2Department of Obstetrics and Gynaecology, Government Medical College and Hospital, Chandigarh 160030, India

Received 22 March 2012; Revised 5 July 2012; Accepted 18 August 2012

Academic Editor: Bryan Larsen

Copyright © 2012 Rakesh Sehgal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. McClelland, “Trichomonas vaginalis infection: can we afford to do nothing?” Journal of Infectious Diseases, vol. 197, no. 4, pp. 487–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Petrin, K. Delgaty, R. Bhatt, and G. Garber, “Clinical and microbiological aspects of Trichomonas vaginalis,” Clinical Microbiology Reviews, vol. 11, no. 2, pp. 300–317, 1998. View at Google Scholar · View at Scopus
  3. J. R. Schwebke and D. Burgess, “Trichomoniasis,” Clinical Microbiology Reviews, vol. 17, no. 4, pp. 794–803, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Heine and J. A. McGregor, “Trichomonas vaginalis: a reemerging pathogen,” Clinical Obstetrics and Gynecology, vol. 36, no. 1, pp. 137–144, 1993. View at Google Scholar · View at Scopus
  5. T. Goswami, A. Rolfs, and M. A. Hediger, “Iron transport: emerging roles in health and disease,” Biochemistry and Cell Biology, vol. 80, no. 5, pp. 679–689, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. D. Weinberg, “Iron and susceptibility to infectious disease,” Science, vol. 184, no. 4140, pp. 952–956, 1974. View at Google Scholar · View at Scopus
  7. S. Vanacova, D. Rasoloson, J. Rázga, I. Hrdý, J. Kulda, and J. Tachezy, “Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins,” Microbiology, vol. 147, no. 1, pp. 53–62, 2001. View at Google Scholar · View at Scopus
  8. U. E. Schaible and S. H. E. Kaufmann, “Iron and microbial infection,” Nature Reviews Microbiology, vol. 2, no. 12, pp. 946–953, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. L. Dunn, Y. S. Rahmanto, and D. R. Richardson, “Iron uptake and metabolism in the new millennium,” Trends in Cell Biology, vol. 17, no. 2, pp. 93–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Zhang and C. A. Enns, “Iron homeostasis: recently identified proteins provide insight into novel control mechanisms,” Journal of Biological Chemistry, vol. 284, no. 2, pp. 711–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. N. Baker and H. M. Baker, “Molecular structure, binding properties and dynamics of lactoferrin,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2531–2539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Legrand, A. Pierce, E. Elass, M. Carpentier, C. Mariller, and J. Mazurier, “Lactoferrin structure and functions,” Advances in Experimental Medicine and Biology, vol. 606, pp. 163–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. A. Van Veen, M. E. J. Geerts, P. H. C. Van Berkel, and J. H. Nuijens, “The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis,” European Journal of Biochemistry, vol. 271, no. 4, pp. 678–684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. L. H. Vorland, “Lactoferrin: a multifunctional glycoprotein,” APMIS, vol. 107, no. 11, pp. 971–981, 1999. View at Google Scholar · View at Scopus
  15. L. A. Lambert, “Molecular evolution of the transferrin family and associated receptors,” Biochimica et Biophysica Acta, vol. 1820, no. 3, pp. 244–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. B. W. A. Van der Strate, L. Beljaars, G. Molema, M. C. Harmsen, and D. K. F. Meijer, “Antiviral activities of lactoferrin,” Antiviral Research, vol. 52, no. 3, pp. 225–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. Ward, E. Paz, and O. M. Conneely, “Multifunctional roles of lactoferrin: a critical overview,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2540–2548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Bennett and T. Kokocinski, “Lactoferrin content of peripheral blood cells,” British Journal of Haematology, vol. 39, no. 4, pp. 509–521, 1978. View at Google Scholar · View at Scopus
  19. D. Legrand, E. Elass, M. Carpentier, and J. Mazurier, “Lactoferrin: a modulator of immune and inflammatory responses,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2549–2559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Valenti and G. Antonini, “Lactoferrin: an important host defence against microbial and viral attack,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2576–2587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Puddu, P. Valenti, and S. Gessani, “Immunomodulatory effects of lactoferrin on antigen presenting cells,” Biochimie, vol. 91, no. 1, pp. 11–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Paesano, F. Torcia, F. Berlutti et al., “Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women,” Biochemistry and Cell Biology, vol. 84, no. 3, pp. 377–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Paesano, F. Berlutti, M. Pietropaoli et al., “Lactoferrin efficacy versus ferrous sulfate in curing iron deficiency and iron deficiency anemia in pregnant women,” BioMetals, vol. 23, no. 3, pp. 411–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Paesano, M. Pietropaoli, S. Gessani, and P. Valenti, “The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia,” Biochimie, vol. 91, no. 1, pp. 44–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Puddu, D. Latorre, M. Carollo et al., “Bovine lactoferrin counteracts Toll-like receptor mediated activation signals in antigen presenting cells,” PLoS One, vol. 6, no. 7, Article ID e22504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Berlutti, S. Schippa, C. Morea et al., “Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains,” Biochemistry and Cell Biology, vol. 84, no. 3, pp. 351–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Valenti, A. Catizone, F. Pantanella et al., “Lactoferrin decreases inflammatory response by cystic fibrosis bronchial cells invaded with Burkholderia cenocepacia iron-modulated biofilm,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 4, pp. 1057–1068, 2011. View at Google Scholar
  28. Y. A. Suzuki, H. Wong, K. Y. Ashida, A. B. Schryvers, and B. Lönnerdal, “The N1 domain of human lactoferrin is required for internalization by caco-2 cells and targeting to the nucleus,” Biochemistry, vol. 47, no. 41, pp. 10915–10920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Bullen, “The significance of iron in infection,” Reviews of Infectious Diseases, vol. 3, no. 6, pp. 1127–1138, 1981. View at Google Scholar · View at Scopus
  30. E. Elass, M. Masson, J. Mazurier, and D. Legrand, “Lactoferrin inhibits the lipopolysaccharide-induced expression and proteoglycan-binding ability of interleukin-8 in human endothelial cells,” Infection and Immunity, vol. 70, no. 4, pp. 1860–1866, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. N. León-Sicairos, F. López-Soto, M. Reyes-López, D. Godínez-Vargas, C. Ordaz-Pichardo, and M. De La Garza, “Amoebicidal activity of milk, apo-lactoferrin, slgA and lysozyme,” Clinical Medicine and Research, vol. 4, no. 2, pp. 106–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. E. D. Weinberg, “Iron availability and infection,” Biochimica et Biophysica Acta, vol. 1790, no. 7, pp. 600–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Ortíz-Estrada, S. Luna-Castro, C. Piña-Vázquez et al., “Iron-saturated lactoferrin and pathogenic protozoa: could this protein be an iron source for their parasitic style of life?” Future Microbiology, vol. 7, no. 1, pp. 149–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. E. D. Weinberg, “Microbial pathogens with impaired ability to acquire host iron,” BioMetals, vol. 13, no. 1, pp. 85–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Sutak, C. Chamot, J. Tachezy, J. M. Camadro, and E. Lesuisse, “Siderophore and haem iron use by Tritrichomonas foetus,” Microbiology, vol. 150, no. 12, pp. 3979–3987, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. M. Peterson and J. F. Alderete, “Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors,” Journal of Experimental Medicine, vol. 160, no. 2, pp. 398–410, 1984. View at Google Scholar · View at Scopus
  37. M. W. Lehker, T. H. Chang, D. C. Dailey, and J. F. Alderete, “Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis,” Journal of Experimental Medicine, vol. 171, no. 6, pp. 2165–2170, 1990. View at Publisher · View at Google Scholar · View at Scopus
  38. M. W. Lehker and J. F. Alderete, “Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins,” Molecular Microbiology, vol. 6, no. 1, pp. 123–132, 1992. View at Google Scholar · View at Scopus
  39. M. S. Cohen, B. E. Britigan, M. French, and K. Bean, “Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae,” American Journal of Obstetrics and Gynecology, vol. 157, no. 5, pp. 1122–1125, 1987. View at Google Scholar · View at Scopus
  40. Y. Q. Yuan and C. G. Xue, “Influence of iron ion on the growth of Trichomonas vaginalis in vitro,” Chinese Journal of Parasitology & Parasitic Diseases, vol. 28, no. 4, pp. 273–276, 2010. View at Google Scholar · View at Scopus
  41. J. F. Alderete, M. Benchimol, M. W. Lehker, and M. L. Crouch, “The complex fibronectin—Trichomonas vaginalis interactions and Trichomonosis,” Parasitology International, vol. 51, no. 3, pp. 285–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. M. L. Crouch, M. Benchimol, and J. F. Alderete, “Binding of fibronectin by Trichomonas vaginalis is influenced by iron and calcium,” Microbial Pathogenesis, vol. 31, no. 3, pp. 131–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. A. S. Kucknoor, V. Mundodi, and J. F. Alderete, “The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65,” Cellular Microbiology, vol. 9, no. 11, pp. 2586–2597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Hsu, S. J. Ong, M. C. Lee, and J. H. Tai, “Transcriptional regulation of an iron-inducible gene by differential and alternate promoter entries of multiple Myb proteins in the protozoan parasite Trichomonas vaginalis,” Eukaryotic Cell, vol. 8, no. 3, pp. 362–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. T. E. Gorrell, “Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis,” Journal of Bacteriology, vol. 161, no. 3, pp. 1228–1230, 1985. View at Google Scholar · View at Scopus
  46. V. Moreno-Brito, C. Yanez-Gomez, P. Meza-Cervantez et al., “A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron,” Cellular Microbiology, vol. 7, no. 2, pp. 245–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. D. F. Harp and I. Chowdhury, “Trichomoniasis: evaluation to execution,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 157, no. 1, pp. 3–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Lama, A. Kucknoor, V. Mundodi, and J. F. Alderete, “Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis,” Infection and Immunity, vol. 77, no. 7, pp. 2703–2711, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. D. Tsai, H. W. Liu, and J. H. Tai, “Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 5153–5162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. J. S. Ryu, H. K. Choi, D. Y. Min, S. E. Ha, and M. H. Ahn, “Effect of iron on the virulence of Trichomonas vaginalis,” Journal of Parasitology, vol. 87, no. 2, pp. 457–460, 2001. View at Google Scholar · View at Scopus
  51. J. F. Alderete, D. Provenzano, and M. W. Lehker, “Iron mediates Trichomonas vaginalis resistance to complement lysis,” Microbial Pathogenesis, vol. 19, no. 2, pp. 93–103, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. A. L. Wang and C. C. Wang, “The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 20, pp. 7956–7960, 1986. View at Google Scholar · View at Scopus
  53. A. Wang, C. C. Wang, and J. F. Alderete, “Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus,” Journal of Experimental Medicine, vol. 166, no. 1, pp. 142–150, 1987. View at Google Scholar · View at Scopus
  54. J. F. Alderete, “Iron modulates phenotypic variation and phosphorylation of P270 in double-stranded RNA virus-infected Trichomonas vaginalis,” Infection and Immunity, vol. 67, no. 8, pp. 4298–4302, 1999. View at Google Scholar · View at Scopus
  55. M. W. Lehker, R. Arroyo, and J. F. Alderete, “The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis,” Journal of Experimental Medicine, vol. 174, no. 2, pp. 311–318, 1991. View at Google Scholar · View at Scopus
  56. A. F. Garcia, T. H. Chang, M. Benchimol, D. J. Klumpp, M. W. Lehker, and J. F. Alderete, “Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis,” Molecular Microbiology, vol. 47, no. 5, pp. 1207–1224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. M. E. Alvarez-Sánchez, E. Solano-González, C. Yañez-Gómez, and R. Arroyo, “Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis,” Microbes and Infection, vol. 9, no. 14-15, pp. 1597–1605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Hernandez-Gutierrez, J. Ortega-López, and R. Arroyo, “A 39-kDa cysteine proteinase CP39 from Trichomonas vaginalis, which is negatively affected by iron may be involved in Trichomonal Cytotoxicity,” Journal of Eukaryotic Microbiology, vol. 50, pp. 696–698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. C. R. León-Sicairos, J. León-Félix, and R. Arroyo, “Tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene,” Microbiology, vol. 150, no. 5, pp. 1131–1138, 2004. View at Google Scholar · View at Scopus
  60. M. L. V. Crouch and J. F. Alderete, “Trichomonas vaginalis has two fibronectin-like iron-regulated genes,” Archives of Medical Research, vol. 32, no. 2, pp. 102–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. S. C. Robinson, “Trichomonal Vaginitis Resistant to Metranidazole,” Canadian Medical Association Journal, vol. 86, p. 665, 1962. View at Google Scholar
  62. R. L. Dunne, L. A. Dunn, P. Upcroft, P. J. O'Donoghue, and J. A. Upcroft, “Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis,” Cell Research, vol. 13, no. 4, pp. 239–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Upcroft and J. A. Upcroft, “Drug targets and mechanisms of resistance in the anaerobic protozoa,” Clinical Microbiology Reviews, vol. 14, no. 1, pp. 150–164, 2001. View at Publisher · View at Google Scholar · View at Scopus