Table of Contents Author Guidelines Submit a Manuscript
Infectious Diseases in Obstetrics and Gynecology
Volume 2012, Article ID 636474, 14 pages
http://dx.doi.org/10.1155/2012/636474
Research Article

Probiotic Interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the Opportunistic Fungal Pathogen Candida albicans

1Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
2Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
3Canadian R&D Centre for Probiotics, Lawson Health Research Institute, London, ON, Canada N6A 4V2
4Departments of Microbiology and Immunology, and Surgery, University of Western Ontario, London, ON, Canada N6A 3K7

Received 2 October 2011; Revised 16 February 2012; Accepted 21 February 2012

Academic Editor: Susan Cu-Uvin

Copyright © 2012 Gerwald A. Köhler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Achkar and B. C. Fries, “Candida infections of the genitourinary tract,” Clinical Microbiology Reviews, vol. 23, no. 2, pp. 253–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. D. Sobel, “Vulvovaginal candidosis,” Lancet, vol. 369, no. 9577, pp. 1961–1971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Sobel, S. Faro, R. W. Force et al., “Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations,” American Journal of Obstetrics and Gynecology, vol. 178, no. 2, pp. 203–211, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Sobel, “Current trends and challenges in candidiasis,” Oncology, vol. 18, no. 14, pp. 7–8, 2004. View at Google Scholar · View at Scopus
  5. M. R. Anderson, K. Klink, and A. Cohrssen, “Evaluation of vaginal complaints,” Journal of the American Medical Association, vol. 291, no. 11, pp. 1368–1379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Foxman, R. Barlow, H. D'Arcy, B. Gillespie, and J. D. Sobel, “Candida vaginitis: self-reported incidence and associated costs,” Sexually Transmitted Diseases, vol. 27, no. 4, pp. 230–235, 2000. View at Google Scholar · View at Scopus
  7. R. C. R. Martinez, S. A. Franceschini, M. C. Patta et al., “Improved treatment of vulvovaginal candidiasis with fluconazole plus probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14,” Letters in Applied Microbiology, vol. 48, no. 3, pp. 269–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. R. Martinez, S. L. Seney, K. L. Summers, A. Nomizo, E. C. P. De Martinis, and G. Reid, “Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation,” Microbiology and Immunology, vol. 53, no. 9, pp. 487–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Gillum, E. Y. H. Tsay, and D. R. Kirsch, “Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. colipyrF mutations,” Molecular and General Genetics, vol. 198, no. 1, pp. 179–182, 1984. View at Google Scholar · View at Scopus
  10. G. Reid, D. Charbonneau, J. Erb et al., “Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women,” FEMS Immunology and Medical Microbiology, vol. 35, no. 2, pp. 131–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Reid, R. L. Cook, and A. W. Bruce, “Examination of strains of lactobacilli for properties that may influence bacterial interference in the urinary tract,” Journal of Urology, vol. 138, no. 2, pp. 330–335, 1987. View at Google Scholar · View at Scopus
  12. C. Y. Lan, G. Newport, L. A. Murillo et al., “Metabolic specialization associated with phenotypic switching in Candida albicans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 14907–14912, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Colantuoni, G. Henry, S. Zeger, and J. Pevsner, “SNOMAD (Standardization and Normalization of MicroArray Data): web-accessible gene expression data analysis,” Bioinformatics, vol. 18, no. 11, pp. 1540–1541, 2002. View at Google Scholar · View at Scopus
  14. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Fuchs, J. Pané-Farré, C. Kohler, M. Hecker, and S. Engelmann, “Anaerobic gene expression in Staphylococcus aureus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4275–4289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. P. Samaranayake, D. A. M. Geddes, D. A. Weetman, and T. W. MacFarlane, “Growth and acid production of Candida albicans in carbohydrate supplemented media,” Microbios, vol. 37, no. 148, pp. 105–115, 1983. View at Google Scholar · View at Scopus
  17. L. P. Samaranayake, A. Hughes, D. A. Weetman, and T. W. MacFarlane, “Growth and acid production of Candida species in human saliva supplemented with glucose,” Journal of Oral Pathology, vol. 15, no. 5, pp. 251–254, 1986. View at Google Scholar · View at Scopus
  18. I. Soares-Silva, S. Paiva, P. Kötter, K. D. Entian, and M. Casal, “The disruption of JEN1 from Candida albicans impairs the transport of lactate,” Molecular Membrane Biology, vol. 21, no. 6, pp. 403–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Vieira, M. Casal, B. Johansson, D. M. MacCallum, A. J. P. Brown, and S. Paiva, “Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans,” Molecular Microbiology, vol. 75, no. 6, pp. 1337–1354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Skrzypek, M. B. Arnaud, M. C. Costanzo et al., “New tools at the Candida genome database: biochemical pathways and full-text literature search,” Nucleic Acids Research, vol. 38, no. 1, pp. D428–D432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. A. Marr, C. N. Lyons, T. Rustad, R. A. Bowden, and T. C. White, “Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 10, pp. 2584–2589, 1998. View at Google Scholar · View at Scopus
  22. T. C. White, “Increased mRNA levels of ERG16, CDR, and MDR1 correlate, with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 7, pp. 1482–1487, 1997. View at Google Scholar · View at Scopus
  23. T. C. White, S. Holleman, F. Dy, L. F. Mirels, and D. A. Stevens, “Resistance mechanisms in clinical isolates of Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1704–1713, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, “Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 11, pp. 2378–2386, 1995. View at Google Scholar · View at Scopus
  25. R. Prasad, P. De Wergifosse, A. Goffeau, and E. Balzi, “Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals,” Current Genetics, vol. 27, no. 4, pp. 320–329, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Enjalbert, D. A. Smith, M. J. Cornell et al., “Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans,” Molecular Biology of the Cell, vol. 17, no. 2, pp. 1018–1032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Franz, S. Michel, and J. Morschhäuser, “A fourth gene from the Candida albicans CDR family of ABC transporters,” Gene, vol. 220, no. 1-2, pp. 91–98, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. T.-L. Han, R. D. Cannon, and S. G. Villas-Bôas, “The metabolic basis of Candida albicans morphogenesis and quorum sensing,” Fungal Genetics and Biology, vol. 48, no. 8, pp. 747–763, 2011. View at Publisher · View at Google Scholar
  29. K. L. Lee, H. R. Buckley, and C. C. Campbell, “An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans,” Sabouraudia Journal of Medical and Veterinary Mycology, vol. 13, no. 2, pp. 148–153, 1975. View at Google Scholar · View at Scopus
  30. S. M. Saporito-Irwin, C. E. Birse, P. S. Sypherd, and W. A. Fonzi, “PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis,” Molecular and Cellular Biology, vol. 15, no. 2, pp. 601–613, 1995. View at Google Scholar · View at Scopus
  31. F. De Bernardis, F. A. Mühlschlegel, A. Cassone, and W. A. Fonzi, “The pH of the host niche controls gene expression in and virulence of Candida albicans,” Infection and Immunity, vol. 66, no. 7, pp. 3317–3325, 1998. View at Google Scholar · View at Scopus
  32. J. Calderon, M. Zavrel, E. Ragni, W. A. Fonzi, S. Rupp, and L. Popolo, “PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodelling enzyme, is required for adhesion and invasion,” Microbiology, vol. 156, no. 8, pp. 2484–2494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Reid, S. O. Kim, and G. A. Köhler, “Selecting, testing and understanding probiotic microorganisms,” FEMS Immunology and Medical Microbiology, vol. 46, no. 2, pp. 149–157, 2006. View at Publisher · View at Google Scholar · View at Scopus