Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2011 (2011), Article ID 409328, 12 pages
http://dx.doi.org/10.1155/2011/409328
Research Article

A Conceptual Model for Assessing the Minimum Size Area for an Area-Wide Integrated Pest Management Program

1Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, Canada V8Z 1M5
2Biology Department, CSI, CUNY, 2800 Victory Boulevard, Staten Island, 10314, USA
3Australian Fruit Fly Research Centre, School of Biological Sciences A12, The University of Sydney, NSW 2006, Australia
4Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, The University of New South Wales Sydney, NSW 2052, Australia
5The New Zealand Institute for Plant and Food Research Ltd., PB 4704, Christchurch 8140, New Zealand
6United States Department of Agriculture, 4a. avenida 12-62, Zona 10 Ciudad de Guatemala 01010, Guatemala
7Insect Pest Control Section, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, Wagramerstrasse 5, 1400 Vienna, Austria
8Moscamed Regional Program, 16 Street 3-38 Area 10, Guatemala City, Guatemala
9Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, Wagramerstrasse 5, 1400 Vienna, Austria

Received 9 December 2010; Accepted 13 January 2011

Academic Editor: Allen V. Barker

Copyright © 2011 Hugh J. Barclay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A conceptual model was developed based on the two basic spatial elements of area-wide integrated pest management (AW-IPM), a core area and a buffer zone, to determine the minimum size of the protected area for the program to be technically feasible and economically justifiable. The model consisted of a biological part (insect dispersal) and an economic part. The biological part used random walks and diffusion equations to describe insect dispersal and to determine the minimum width of the buffer zone required to protect the core area from immigration of pests from outside. In the economic part, the size of the core area was calculated to determine the point at which the revenues from the core area equal the control costs. This model will need to be calibrated and validated for each species and geographic location. Tsetse flies and the Mediterranean fruit fly are used as case studies to illustrate the model.