Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012, Article ID 407365, 11 pages
Research Article

Epidemiology of the Diseases of Wheat under Different Strategies of Supplementary Irrigation

1Department of Environmental Science, National University of Litoral, Kreder 2805, 3080 Esperanza, Argentina
2Department of Vegetal Production, National University of Litoral, Kreder 2805, 3080 Esperanza, Argentina

Received 13 November 2011; Revised 30 January 2012; Accepted 4 March 2012

Academic Editor: María Rosa Simón

Copyright © 2012 Roberto P. Marano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. E. Abbate, J. L. Dardanelli, M. G. Cantarero, M. Maturano, R. J. M. Melchiori, and E. E. Suero, “Climatic and water availability effects on water-use efficiency in wheat,” Crop Science, vol. 44, no. 2, pp. 474–483, 2004. View at Google Scholar · View at Scopus
  2. G. Camussi and R. P. Marano, “Wheat response to supplemental irrigation in the central region of Santa Fe,” Revista FAVE Sección Ciencias Agrarias, vol. 7, no. 1, pp. 7–21, 1990. View at Google Scholar
  3. N. Formento, “Productive and health behaviour of wheat cultivars in zero tillage, rainfed and irrigation, season 1999/2000,”
  4. A. Salinas, E. Martellotto, P. Salas, J. Giubergia, S. Lingua, and E. Lovera, “Economic performance in supplementary irrigation production system with supplementary irrigation in continuous zero tillage,” INTA Manfredi, 2003,
  5. M. D'Onofrio, “Liquid fertilization in wheat under irrigation. SolUAN application (tillering) combined with FoliarSOL U (anthesis),” Communications- Valle Inferior, pp. 12–15, 2007,
  6. R. Carretero, R. Serrago, and D. Miralles, “Foliar diseases of wheat. An eco-physiological perspective,” 2nd Meeting Wheat in the Central Region, pp. 17–23, 2007,
  7. M. Carmona and E. Reis, Potential Evaluation System for Yield in Wheat. Its Usefulness for Application of Fungicides for Economic Control of Diseases, Imprenta Rago, Buenos Aires, Argentina, 1st edition, 2001.
  8. A. E. Perelló and M. Moreno, “Survey of foliar diseases of wheat and identification of causal agents,” in Proceedings of the 6th Congreso Nacional de Trigo. IV Simposio Nacional de Cultivos de siembra otoño-invernal, p. 257, INTA, Bahia Blanca, Argentina, 2004.
  9. M. R. Simón, F. M. Ayala, S. I. Golik et al., “Integrated foliar disease management to prevent yield loss in Argentinian wheat production,” Agronomy Journal, vol. 103, no. 5, 2011. View at Google Scholar
  10. J. Fernández and A. Corro Molas, “Disease management in wheat,” 2003,
  11. R. Massaro, J. Castellarín, and J. Andriani, “Foliar diseases of wheat: frequency recorded during 6 years in southern Santa Fe and its relationship to climatic variables,” pp. 55–58, 2007,
  12. M. Sillon, E. Weder, G. Gianinetto, and J. Albrech, “Phytosanitary analysis of the 2006 season and possible future scenarios,” 2nd Meeting Wheat in the Central Region, pp. 25–30, 2007,
  13. R. M. Hosford, “A form of Pyrenphora tricosthoma pathogenic to wheat and other grasses,” Phytopathology, vol. 61, pp. 28–32, 1971. View at Google Scholar
  14. R. M. Hosford and R. H. Busch, “Losses in wheat caused by Pyrenophora trichostoma and Leptosphaeria avenaria f. sp. Triticea,” Phytopathology, vol. 64, pp. 184–187, 1974. View at Google Scholar
  15. R. G. Rees, G. J. Platz, and R. J. Meyer, “Yield losses in wheat from yellow spot comparison of estimates derived from single tillers and plots,” Australian Journal of Agricultural Research, vol. 33, pp. 899–908, 1982. View at Google Scholar
  16. R. G. Rees and G. J. Platz, “Effects of yellow spot on wheat: comparison of epidemic at different stages of crop development,” Australian Journal of Agricultural Research, vol. 34, pp. 39–46, 1983. View at Google Scholar
  17. A. Tekauz and R. G. Platford, “Tan spot of wheat,” Manitoba Agronomy Proceedings, pp. 60–65, 1982. View at Google Scholar
  18. A. E. Perelló, V. Moreno, M. R. Simón, and M. Sisterna, “Tan spot of wheat (Triticum aestivum L.) infection at different stages of crop development and inoculum type,” Crop Protection, vol. 22, no. 1, pp. 157–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. G. Rees, R. J. Mayer, and G. J. Platz, “Yield losses in wheat from yellow spot: a disease-loss relationship derivated from single tillers,” Australian Journal of Agricultural Research, vol. 32, pp. 851–859, 1981. View at Google Scholar
  20. G. Kraan and J. E. Nisi, “Septoria of wheat in Argentina. Status of the crop against the disease,” in Proceedings of the Septoria Tritici Workshop, CIMMYT, L. Gilchrist et al., Ed., pp. 1–8, Mexico City, DF, Mexico, September 1993.
  21. M. R. Simón, A. E. Perelló, C. A. Cordo, and P. C. Struik, “Influence of Septoria tritici on yield, yield components, and test weight of wheat under two nitrogen fertilization conditions,” Crop Science, vol. 42, no. 6, pp. 1974–1981, 2002. View at Google Scholar · View at Scopus
  22. J. Annone, A. Calzolari, O. Polidoro, and H. Conta, “Effect of tan spot caused by Septoria tritici on yield,” Informe 122, INTA EEA Pergamino, Pergamino, Argentina, 1991.
  23. E. Alberione, C. Bainotti, J. Fraschina et al., “Evaluation of seed treatment products for the control of yellow spots (Drechslera tritici repentis) in wheat,” pp. 59–63, 2010,
  24. N. Formento, J. de Souza, and J. C. Velázquez, “Yield losses by yellow spot in wheat (Pyrenophora tritici-repentis, anamorph: Drechslera tritici-repentis). Preliminary results,” 2007,
  25. J. A. Kolmer, “Genetics of resistance to wheat leaf rust,” Annual Review of Phytopathology, vol. 34, pp. 435–455, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. A. P. Roelfs, R. P. Singh, and E. E. Saari, Rust Diseases of Wheat: Concepts and Methods of Disease Management, CIMMYT, Mexico City, Mexico, 1992.
  27. S. G. Layva Mir, E. E. Rangel, E. Villaseñor Mir, and J. H. Espino, “Effect of leaf rust (Puccinia triticina. Eriks) on wheat yield (Triticum aestivum L.) in dry conditions,” Revista Mexicana de Fitopatología, pp. 40–45, ISSN: 0185-3309, 2003.
  28. N. Formento, “Health and aging of wheat seeds,” 2002,
  29. T. K. Turkington, A. Kuzyk, R. Dunn et al., “Irrigation and plant disease management,” 2004,$department/deptdocs.nsf/all/ind10759/$file/irrigation_and_plant_disease_management.pdf?OpenElement.
  30. J. Andriani, N. Huguet, and C. Regis, “Evaluation of wheat cultivars with supplemental irrigation,” in To Improve Production 16, Wheat Season 2000/01, INTA EEA Oliveros, Santa Fe, Argentina, 2001. View at Google Scholar
  31. A. Peretti, Seed Testing Manual, Hemisferio Sur, Buenos Aires, Argentina, 1994.
  32. R. Arango Perearnau, R. Craviotto, and C. Gallo, “New container for analysis of germination and seed health: use in pathology,” in Proceedings of the 3rd Congreso de soja del MERCOSUR, CD, pp. 166–169, 2006.
  33. M. Sisterna and D. Minhot, “The genus Marielliottia (hyphomycetes, Ascomycetes): a new taxon mycoflora associated with the grain of wheat in Argentina,” Boletín Sociedad Argentina de Botánica, vol. 41, pp. 177–182, 2006. View at Google Scholar
  34. J. C. Zadoks, T. T. Chang, and C. F. Konzak, “A decimal code for growth stages of cereals,” Weed Research, vol. 14, pp. 415–421, 1974. View at Google Scholar
  35. M. Carmona, “Chemical control of foliar diseases in wheat,” 2007,
  36. A. Champeil, T. Doré, and J. F. Fourbet, “Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains,” Plant Science, vol. 166, no. 6, pp. 1389–1415, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Formento, “Dose and timing of fungicides to control foliar diseases in wheat,” Año 2001, 2002,
  38. R. F. Peterson, A. B. Campbell, and A. E. Hannah, “A diagrammatic scale for estimating rust intensity of leaves and stem of cereals,” Canadian Journal of Research Section C, vol. 26, pp. 496–500, 1948. View at Google Scholar
  39. R. W. Stack and M. P. McMullen, “A visual scale to estimate severity of fusarium head blight in wheat,” Extensión Serv. North Dakota State University, USA, 1995.
  40. N. Formento, “Effectiveness of tebuconazole and epoxiconazole more Carbendazim in the control of foliar diseases and ear of wheat,” 2003,
  41. M. Carmona, E. M. Reis, and P. Cortese, Leaf Spot of Wheat. Diagnosis, Epidemiology and New Approaches to the Management, BASF, Buenos Aires, Argentina, 1999.
  42. M. Carmona, E. M. Reis, and P. Cortese, Wheat Rusts: Symptoms, Epidemiology and Control Strategies, Imprenta Commiso Industria Gráfica, Buenos Aires, Argentina, 1st edition, 2000.
  43. INFOSTAT, Universidad Nacional de Córdoba, Editorial Brujas, Córdoba Argentina, 1st edition, 2009.
  44. C. Jobet, J. Zúñiga, H. Campos de Quiroz, P. Rathgeb, and G. Marín, “Doubled haploid plants (DH) generated by intergeneric rosses of wheat x maize,” 2002,
  45. S. Leyva Mir, J. Terrones Rodriguez, J. Herrera Espino, and H. Villaseñor Mir, “Analysis of inductive resistance components of a slow development of wheat rust (Puccinia triticina Eriks.),” 2007,
  46. N. Formento and Z. Burne, “Effectiveness of fungicides in the control of tan spot (Drechslera tritici-repentis) in wheat,” 2002,
  47. Z. Eyal, A. L. Scharen, J. M. Prescott, and M. Van Ginkel, Wheat Disease Septoria: Concepts and Methods Related to the Management of these Diseases, ClMMYT, Mexico City, Mexico, 1987.
  48. A. R. Klatt and E. Torres, “An overview of diseases of wheat caused by Septoria, Programa de Trigo del CIMMYT,” in Proceedings of the Conferencia Regional Sobre la Septoria Leaf Blotch del Trigo, M. M. Kohli and L. T. Van Beuningen, Eds., CIMMYT, Mexico City, México, 1990.
  49. N. Formento, J. C. Velázquez, and J. de Souza, “Epidemiology of diseases in wheat,” Boletín Fitopatológico. Cultivo de Trigo, vol. 1, no. 2, 2009. View at Google Scholar
  50. M. Díaz de Ackermann, “Leaf spot in wheat caused by Mycosphaerella graminicola (Fuckel) schroeter perfect state of Septoria tritici Rob. Es Desm,” in Curso Manejo de Enfermedades del Trigo, M. M. Kohli, J. Annone, and R. García , Eds., pp. 100–117, INTA-CIMMYT, Pergamino, Argentina, 1995. View at Google Scholar
  51. G. Shaner and R. Finney, “Wheater and epidemics of septoria leaf blotch of wheat,” Phytopathology, vol. 66, pp. 781–785, 1976. View at Google Scholar
  52. C. R. Larez, R. M. Hosford, and T. P. Freeman, “Infection of wheat and oats by Pyrenophora tritici-repentis and initial characterization of resistance,” Phytopathology, vol. 76, pp. 931–938, 1986. View at Google Scholar
  53. R. M. Hosford, C. R. Larez, and J. J. Hammond, “Interaction of wheat period and temperature on Pyrenophora tritici-repentis infection and development in wheat of differing resistance,” Phytopathology, vol. 77, pp. 1021–1027, 1987. View at Google Scholar
  54. D. N. Sah, “Effects of leaf wetness duration and inoculums level on resistance of wheat genotypes to Pyrenophora tritici-repentis,” Journal of Phytopathology, vol. 142, pp. 324–330, 1994. View at Google Scholar
  55. J. Annone, “The tan spot or yellow wheat,” in Curso Manejo de Enfermedades del Trigo, M. M. Kohli, J. Annone, and R. García, Eds., pp. 118–134, INTA-CIMMYT, Pergamino, Argentina, 1995. View at Google Scholar
  56. R. L. Conner, “Influence of irrigation and precipitation on incidence of blackpoint in soft white spring wheat,” Canadian Journal of Plant Pathology, vol. 11, pp. 388–392, 1989. View at Google Scholar
  57. R. C. Moschini, M. N. Sisterna, and M. A. Carmona, “Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas region,” Australian Journal of Agricultural Research, vol. 57, no. 11, pp. 1151–1156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Miravalles, V. Beaufort, and F. Möckel, “Relative susceptibility to blackpoint in durum wheat varieties of Argentina,” Phyton, vol. 77, pp. 263–273, 2008. View at Google Scholar · View at Scopus
  59. L. Carrillo, “Fungi in Foods and Feeds,” in Alternaria, pp. 81–86, Universidad Nacional de Salta, Tartagal, Salta, Argentina, 2003. View at Google Scholar
  60. D. Can Xing, W. Xiao Ming, Z. Zhen Dong, and W. Xao Fei, “Testing of seedborne fungi in wheat germplasm conserved in the national crop genebank of China,” Agricultural Sciences in China, vol. 6, no. 6, pp. 682–687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. N. A. Ramirez, M. Mezzalama, A. Carballo, and A. Livera, “Effect of fungicides on seed physiological quality of wheat miller (Triticum aestivum L.) and their effectiveness in controlling fusarium graminearum Schwabe,” Revista Mexicana de Fitopatología, vol. 24, no. 2, pp. 115–121, 2006. View at Google Scholar
  62. J. Annone, R. García, O. Polidoro, and A. Calzolari, “Response of cultivars of wheat under different tillage combinations of nitrogen, supplemental foliar fungicide treatment,” Trigo en Siembra Directa, pp. 61–67, AAPRESID, 2003.
  63. J. Annone and R. García, “The main wheat leaf spot. Importance, epidemiology and strategies to reduce their impact on production,” 2003,
  64. R. A. Massaro, A. Gargicevich, M. González et al., “Association between cultural variables and severity of wheat leaf diseases,” 2005,
  65. R. A. Fischer, “Wheat physiology: a review of recent developments,” Crop and Pasture Science, vol. 62, no. 2, pp. 95–114, 2011. View at Publisher · View at Google Scholar · View at Scopus