Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012, Article ID 543230, 7 pages
http://dx.doi.org/10.1155/2012/543230
Research Article

Improvement of Soybean Oil Solvent Extraction through Enzymatic Pretreatment

1Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenue Velez Sarsfield 1200, 5000 Córdoba, Argentina
2Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Avenue Valparaíso s/no, 5000 Córdoba, Argentina

Received 5 November 2011; Revised 14 February 2012; Accepted 6 March 2012

Academic Editor: Bertrand Matthäus

Copyright © 2012 F. V. Grasso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Aceites y Grasas, “China y Argentina: el crushing de soja,” Aceites y Grasas, vol. 74, pp. 36–37, 2009. View at Google Scholar
  2. A. Rosenthal, D. L. Pyle, and K. Niranjan, “Aqueous and enzymatic extraction of editable oils from oilseeds,” Enzyme and Microbial Technology, vol. 19, p. 401, 1996. View at Google Scholar
  3. D. Shankar, Y. C. Agrawal, B. C. Sarkar, and B. P. N. Singh, “Enzymatic hydrolysis in conjunction with conventional pretreatments to soybean for enhanced oil availability and recovery,” JAOCS, vol. 74, no. 12, pp. 1543–1547, 1997. View at Google Scholar · View at Scopus
  4. M. E. Carrín and G. H. Crapiste, “Mathematical modeling of vegetable oil-solvent extraction in a multistage horizontal extractor,” Journal of Food Engineering, vol. 85, no. 3, pp. 418–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. H. Varzakas, G. C. Leach, C. J. Israilides, and D. Arapaglou, “Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods,” Enzyme and Microbial Technology, vol. 37, p. 29, 2005. View at Google Scholar
  6. C. J. Geankoplis, Procesos de Transporte y Operaciones Unitarias, CECSA, San Luis Potosi, Mexico, 3rd edition, 1998.
  7. M. Pramparo, S. Gregory, and M. Mattea, “Immersion vs. percolation in the extraction of oil from oleaginous seeds,” JAOCS, vol. 79, no. 10, pp. 955–960, 2002. View at Google Scholar · View at Scopus
  8. F. Grasso, B. Maroto, and C. Camusso, Pretratamiento Enzimático Para Mmejorar la Extracción de Aceite por Solvente, XIX Jornadas IRAM-Universidades y IV Foro Unilab, San Luis, Argentina, 2003.
  9. H. Domínguez, M. J. Núñez, and J. M. Lema, “Enzyme-assisted hexane extraction of soya bean oil,” Food Chemistry, vol. 54, no. 2, pp. 223–231, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. Montgomery, Design and Analysis of Experiment, John Wiley & Sons, New York, NY, USA, 1991.
  11. K. L. Wiese and H. E. Snyder, “Analysis of the oil extraction process in soybeans: a new continuous procedure,” JAOCS, vol. 64, no. 3, pp. 402–406, 1987. View at Publisher · View at Google Scholar · View at Scopus
  12. H. P. Fan, J. C. Morris, and H. Wakenham, “Diffusion phenomena in solvent extraction of peanut oil,” Industrial and Engineering Chemistry, vol. 40, no. 2, pp. 195–199, 1948. View at Google Scholar
  13. A. S. Smith, “Evaluation of extraction rate measurements,” JAOCS, vol. 29, pp. 421–425, 1952. View at Google Scholar
  14. J. Sineiro, H. Dominguez, and M. J. Núñez, “Influencia del tratamiento enzimático en la calidad de aceites vegetales,” Grasas y Aceites, vol. 49, p. 191, 1998. View at Google Scholar
  15. G. C. Majumdar, A. N. Samanta, and S. P. Sengupta, “Modeling solvent extraction of vegetable oil in a packed bed,” JAOCS, vol. 72, no. 9, pp. 971–979, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Espinoza-Pérez, A. Vargas, V. J. Robles-Olvera, G. C. Rodríguez-Jimenes, and M. A. García-Alvarado, “Mathematical modeling of caffeine kinetic during solid-liquid extraction of coffee beans,” Journal of Food Engineering, vol. 81, no. 1, pp. 72–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. M. Düsterhöft, A. W. Bonte, J. C. Venekamp, and A. G. J. Voragen, “The role of fungal polysaccharidases in the hydrolysis of cell wall materials from sunflower and palm-kernel meals,” World Journal of Microbiology & Biotechnology, vol. 9, no. 5, pp. 544–554, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rosenthal, D. L. Pyle, K. Niranjan, S. Gilmour, and L. Trinca, “Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean,” Enzyme and Microbial Technology, vol. 28, no. 6, pp. 499–509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Doulia, K. Tzia, and V. Gekas, “A knowledge base for the apparent mass diffusion coefficient (DEFF) of foods,” International Journal of Food Properties, vol. 3, no. 1, pp. 1–14, 2000. View at Google Scholar · View at Scopus
  20. A. S. Pajonk, R. Saurel, and J. Andrieu, “Experimental study and modeling of effective NaCl diffusion coefficients values during Emmental cheese brining,” Journal of Food Engineering, vol. 60, no. 3, pp. 307–313, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Simeonov, I. Tsibranska, and A. Minchev, “Solid-liquid extraction from plants—experimental kinetics and modelling,” Chemical Engineering Journal, vol. 73, no. 3, pp. 255–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. Cacace and G. Mazza, “Mass transfer process during extraction of phenolic compounds from milled berries,” Journal of Food Engineering, vol. 59, no. 4, pp. 379–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Pérez-Galindo, J. López-Miranda, and I. R. Martín-Dominguez, “Geometric and Reynolds Lumber effects on oregano (Lippia Berlaudieri Schaver) essencial oil extraction,” Journal of Food Engineering, vol. 44, p. 127, 2000. View at Google Scholar
  24. I. Seikova, E. Simeonov, and E. Ivanova, “Protein leaching from tomato seed-Experimental kinetics and prediction of effective diffusivity,” Journal of Food Engineering, vol. 61, no. 2, pp. 165–171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Welti-Chanes, F. Vergara-Balderas, and D. Bermúdez-Aguirre, “Transport phenomena in food engineering: basic concepts and advances,” Journal of Food Engineering, vol. 67, no. 1-2, pp. 113–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Chalermchat, M. Fincan, and P. Dejmek, “Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: mathematical modelling of mass transfer,” Journal of Food Engineering, vol. 64, no. 2, pp. 229–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Mantell, M. Rodriguez, and E. Martinez de la Ossa, “Semi-batch extraction of anthocyanins from red grape pomace in packed beds: experimental results and process modellling,” Chemical Engineering Science, vol. 57, p. 3831, 2002. View at Google Scholar
  28. M. J. Rivero Martinez, Diseño del proceso de purificación de estireno mediante adsorción en alúmina, thesis, Cantabria University, 2002.