Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012 (2012), Article ID 632026, 7 pages
Research Article

Responses of Jatropha curcas to Salt and Drought Stresses

1Texas AgriLife Research Center at El Paso, The Texas A&M University System, 1380 A&M Circle, El Paso, TX 79927, USA
2El Paso Community College, Research Initiative for Science Enhancement Program, P.O. BOX 20500, El Paso, TX 79938, USA
3Texas AgriLife Research Center at Weslaco, Texas A&M University System, 2415 E. Highway 83, Weslaco, TX 78596, USA

Received 29 February 2012; Accepted 8 May 2012

Academic Editor: Ravindra N. Chibbar

Copyright © 2012 Genhua Niu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Two greenhouse experiments were conducted to quantify growth responses of Jatropha curcas to a range of salt and drought stresses. Typical symptoms of salinity stress such as leaf edge yellowing were observed in all elevated salinity treatments and the degree of the foliar salt damage increased with the salinity of irrigation water. Total dry weight (DW) of Jatropha plants was reduced by 30%, 30%, and 50%, respectively, when irrigated with saline solutions at electrical conductivity of 3.0, 6.0, and 9.0 dS m1 compared to that in the control. Leaf Na+ concentration was much higher than that observed in most glycophytes. Leaf Cl concentrations were also high. In the drought stress experiment, plants were irrigated daily with nutrient solution at 100%, 70%, 50%, or 30% daily water use (DWU). Deficit irrigation reduced plant growth and leaf development. The DW of leaves, roots, and total were reduced in the 70%, 50%, and 30% DWU compared to the 100% DWU control treatment. In summary, salinity stress and deficit irrigation significantly reduced the growth and leaf development of greenhouse-grown Jatropha plants.