Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2012, Article ID 692350, 5 pages
http://dx.doi.org/10.1155/2012/692350
Review Article

A Review of the Studies and Interactions of Pseudomonas syringae Pathovars on Wheat

1Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Colonia Lindavista, 47820 Ocotlán, JAL, Mexico
2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental, 88900 Río Bravo, TAMPS, Mexico

Received 14 October 2011; Revised 19 December 2011; Accepted 31 December 2011

Academic Editor: María Rosa Simón

Copyright © 2012 Alberto J. Valencia-Botín and María E. Cisneros-López. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. D. Ávila, H. V. C. Santoyo, R. R. Schwentesius, and V. H. M. Palacio, El Mercado del Trigo en Mexico ante el TLCAN, Centro de Investigaciones Económicas, Sociales y Tecnológicas de la Agroindustria y la Agricultura Mundial (CIESTAAM-PIAI), Universidad Autónoma Chapingo, Chapingo, Mexico, 2001.
  2. P. K. Anderson, A. A. Cunningham, N. G. Patel, F. J. Morales, P. R. Epstein, and P. Daszak, “Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers,” Trends in Ecology & Evolution, vol. 19, no. 10, pp. 535–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Wayne, Crop Production. Evolution, History and Technology, John Wiley & Sons, New York, NY, USA, 1995.
  4. H. E. Villaseñor, “Importancia del trigo,” in El Trigo de Temporal en Mexico, H. E. Villaseñor and E. Espitia, Eds., pp. 7–24, INIFAP, CIR-CENTRO, Centro, Mexico, 2000. View at Google Scholar
  5. FAOSTAT, “Production, crops,” 2010, http://faostat.fao.org/site/339/default.aspx.
  6. K. D. Sayre, S. Rajaram, and R. A. Fischer, “Yield potential progress in short bread wheats in North West Mexico,” Crop Science, vol. 37, no. 1, pp. 36–42, 1997. View at Google Scholar · View at Scopus
  7. United States Department of Agriculture, “World agricultural supply and demand estimates,” WASDE, 501, 2011, http://www.usda.gov/oce/commodity/wasde/latest.pdf.
  8. P. L. Pingali and S. Rajaram, “Global wheat research in a changing world: options for sustaining growth in wheat productivity,” in 1998-99 World Facts and Trends, Global Wheat Research in a Changing World: Challenges and Achievements, P. L. Pingali, Ed., pp. 1–18, Centro Internacional de Mejoramiento de Maíz y Trigo, El Batán, Mexico, 1999. View at Google Scholar
  9. L. Cardan, H. Shafik, S. Belouin, R. Broch, F. Grimont, and P. A. Grimont, “DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959),” International Journal of Systematic Bacteriology, vol. 49, no. 2, pp. 469–478, 1999. View at Google Scholar · View at Scopus
  10. J. L. Vanneste, D. A. Cornish, J. Yu, and C. E. Morris, “The application of polymerase chain reaction for characterising strains of Pseudomonas syringae isolated from New Zealand rivers,” New Zealand Plant Protection, vol. 62, pp. 256–261, 2009. View at Google Scholar · View at Scopus
  11. J. M. Young, D. W. Dye, J. F. Bradbury, C. G. Panagopoulus, and C. F. Robbs, “A proposed nomenclature and classification for plant pathogenic bacteria,” Journal of Agricultural Research, vol. 21, no. 1, pp. 153–177, 1978. View at Google Scholar
  12. J. von Kietzell and K. Rudolph, “Epiphytic occurrence of Pseudomonas syringae pv. atrofaciens,” in Pseudomonas syringae Pathovars and Related Pathogens, K. Rudolph, T. J. Burr, J. Mansfield, D. Stead, A. Vivian, and J. von Kietzell, Eds., pp. 29–34, Kluwer Academic, Dodrecht, The Netherlands, 1997. View at Google Scholar
  13. M. N. Kazempour, M. Kheyrgoo, H. Pedramfar, and H. Rahimian, “Isolation and identification of bacterial glum blotch and leaf blight on wheat (Triticum aestivum L.) in Iran,” African Journal of Biotechnology, vol. 9, no. 20, pp. 2860–2865, 2010. View at Google Scholar · View at Scopus
  14. M. Diekmann and C. A. J. Putter, Eds., Technical Guidelines for the Safe Movement of Germoplasm. Small Grain Temperate Cereals. No. 14, Food and Agriculture Organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome, Italy, 1995.
  15. J. von Kietzell and K. Rudolph, “Wheat diseases caused by Pseudomonas syringae pathovars,” in The Bacterial Diseases of Wheat. Concepts and Methods of Disease Management, E. Duveiller, L. Fucikovsky, and K. Rudolph, Eds., pp. 49–57, Centro Internacional de Mejoramiento de Maíz y Trigo, El Batán, Mexico, 1997. View at Google Scholar
  16. P. D. Hernández, Enfermedades de maíz (Zea mays L.), trigo (Triticum aestivum L.) y cebada (Hordeum vulgare L.) presentes en Mexico, Tesis de Licenciatura, Universidad Autónoma Chapingo, Chapingo, Mexico, 1998.
  17. E. L. Little, R. M. Bostock, and B. C. Kirkpatrick, “Genetic characterization of Pseudomonas syringae pv. syringae strains from stone fruits in California,” Applied and Environmental Microbiology, vol. 64, no. 10, pp. 3818–3823, 1998. View at Google Scholar · View at Scopus
  18. H. Toben, A. Mavridis, and K. W. E. Rudolph, “On the occurrence of basal glume root wheat and barley caused by Pseudomonas syringae pv. atrofaciens in West Germany,” Journal of Plant Disease and Protection, vol. 98, no. 3, pp. 225–235, 1991. View at Google Scholar
  19. T. Fukuda, K. Azegami, and H. Tabel, “Histological studies on bacterial black node of barley and wheat caused by Pseudomonas syringae pv. japonica,” Annals of the Phytopathological Society of Japan, vol. 56, no. 2, pp. 252–256, 1990. View at Google Scholar
  20. R. L. Forster and N. W. Schaad, “Control of black chaff of wheat with seed treatment and a foundation seed health program,” Plant Disease, vol. 72, pp. 935–938, 1988. View at Google Scholar
  21. E. Duveiller and H. Maraite, “Study of yield loss due to Xanthomonas campestris pv. undulosa in wheat under high rainfall temperate conditions,” Journal of Plant Disease and Protection, vol. 100, no. 5, pp. 453–459, 1993. View at Google Scholar
  22. A. J. Valencia-Botín, L. E. Mendoza-Onofre, H. V. Silva-Rojas et al., “Indicadores de agresividad y métodos de inoculación con bacterias fitopatógenas en plántulas y semillas de trigo ‘Seri M82’,” Revista Fitotecnia Mexicana, vol. 30, no. 3, pp. 255–259, 2007. View at Google Scholar · View at Scopus
  23. H. A. Zavaleta-Mancera, A. J. Valencia-Botín, L. E. Mendoza-Onofre, H. V. Silva-Rojas, and E. Valadez-Moctezuma, “Use of green fluorescent protein to monitor the colononization of Pseudomonas syringae subsp. syringae on wheat seeds,” Microscopy and Microanalysis Journal, vol. 13, no. S02, pp. 298–299, 2007. View at Publisher · View at Google Scholar
  24. A. J. Valencia-Botín, L. E. Mendoza-Onofre, H. V. Silva-Rojas, E. Valadez-Moctezuma, L. Cordova-Tellez, and H. E. Villaseñor-Mir, “Effect of Pseudomonas syringae subsp. syringae on yield and biomass distribution in wheat,” Spanish Journal of Agricultural Research, vol. 9, no. 4, pp. 1287–1297, 2011. View at Google Scholar
  25. R. A. Jefferson, T. A. Kavanagh, and M. W. Bevan, “GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants,” The EMBO Journal, vol. 6, no. 13, pp. 3901–3907, 1987. View at Google Scholar · View at Scopus
  26. M. T. Buenrostro-Nava, Characterization of GFP gene expression using an automated image collection system and image analysis, Ph.D. thesis, The Ohio State University, Columbus, Ohio, USA, 2002.
  27. O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea,” Journal of Cellular and Comparative Physiology, vol. 59, pp. 223–239, 1962. View at Google Scholar
  28. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805, 1994. View at Google Scholar · View at Scopus
  29. B. Bohanec, Z. Luthar, and K. Rudolf, “A protocol for quantitative analysis of green fluorescent protein-transformed plants, using multiparameter flow cytometry with cluster analysis,” Acta Biologica Cracoviensia Series Botanica, vol. 44, pp. 145–153, 2002. View at Google Scholar · View at Scopus
  30. A. C. Sexton and B. J. Howlett, “Green fluorescent protein as a reporter in the Brassica-Leptosphaeria maculans interaction,” Physiological and Molecular Plant Pathology, vol. 58, no. 1, pp. 13–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Du, Z. Huang, J. E. Flaherty, K. Wells, and G. A. Payne, “Green fluorescent protein as a reporter to monitor gene expression and food colonization by Aspergillus flavus,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 834–836, 1999. View at Google Scholar · View at Scopus
  32. J. T. Coombs and C. M. Franco, “Visualization of an endophytic Streptomyces species in wheat seed,” Applied and Environmental Microbiology, vol. 69, no. 7, pp. 4260–4262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Chen, T. Hsiang, and P. H. Goodwin, “Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco,” Journal of Microbiological Methods, vol. 53, no. 1, pp. 113–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Oren, S. Ezrati, D. Cohen, and A. Sharon, “Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate,” Applied and Environmental Microbiology, vol. 69, no. 3, pp. 1695–1701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Kersters, W. Ludwig, M. Vancanneyt, P. de Vos, M. Gillis, and K. H. Schleifer, “Recent changes in the classification of the Pseudomonas: an overview,” Systematic and Applied Microbiology, vol. 19, no. 4, pp. 465–477, 1996. View at Google Scholar · View at Scopus
  36. N. J. Palleroni, R. W. Ballard, E. Ralston, and M. Doudoroff, “Deoxyribonucleic acid homologies among some Pseudomonas species,” Journal of Bacteriology, vol. 110, no. 1, pp. 1–11, 1972. View at Google Scholar
  37. A. Willems, P. de Vos, M. Gillis, and K. Kersters, “Towards an improved classification of Pseudomonas sp.,” Society for Applied Bacteriology Technical Series, vol. 29, pp. 21–43, 1992. View at Google Scholar
  38. C. T. Bull, C. R. Clarke, R. Cai, B. A. Vinatzer, T. M. Jardini, and S. T. Koike, “Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley,” Phytopathology, vol. 101, no. 7, pp. 847–858, 2011. View at Publisher · View at Google Scholar
  39. N. J. Palleroni, “Genus I. Pseudomonas Migula 1984,” in Bergey's Manual of Systematic Bacteriology, N. R. Krieg and J. G. Holt, Eds., pp. 141–149, Williams & Wilkins, Baltimore, Md, USA, 1984. View at Google Scholar
  40. C. Weinel, Comparative and functional genome analysis of Pseudomonas putida KT2440, Ph.D. thesis, University of Hannover, Hanover, Germany, 2003.
  41. H. V. Silva-Rojas, Caracterización de bacterias fitopatógenas causantes de manchas foliares en el cultivo de frijol (Phaseolus vulgaris L.) en Mexico, Tesis de Doctor en Ciencias, Colegio de Postgraduados, Montecillo, Mexico, 2000.
  42. Y. Anzai, H. Kim, J. Park, H. Wakabayashi, and H. Oyaizu, “Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence,” International Journal of Systematic and Evolutionary Microbiology, vol. 50, no. 4, pp. 1563–1589, 2000. View at Google Scholar · View at Scopus
  43. K. W. E. Rudolph, “Pseudomonas syringae pathovars,” in Pathogenesis and Host Specificity in Plant Diseases, R. P. Singh and K. Kohmoto, Eds., vol. I of Prokaryotes, pp. 47–138, Elsevier Science, Oxford, UK, 1995. View at Google Scholar
  44. H. Sawada, F. Suzuki, I. Matsuda, and N. Saitou, “Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster,” Journal of Molecular Evolution, vol. 49, no. 5, pp. 627–644, 1999. View at Google Scholar · View at Scopus
  45. B. Slabbinck, B. de Baets, P. Dawyndt, and P. de Vos, “Analysis of plant-pathogenic Pseudomonas species using intelligent learning methods: a general focus on taxonomy and fatty acid analysis within the genus Pseudomonas,” Revista Mexicana de Fitopatología, vol. 28, pp. 1–16, 2010. View at Google Scholar
  46. M. Maes and P. Garbeva, “Detection of bacterial phytopathogens based on nucleic acid technology,” Parasitica, vol. 50, no. 1-2, pp. 75–80, 1994. View at Google Scholar
  47. F. J. Louws, J. L. W. Rademaker, and F. J. de Bruijn, “The three DS of PCR-based genomic analysis of phytobacteria: diversity detection, and disease diagnosis,” Annual Review of Phytopathology, vol. 37, pp. 81–125, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Bragard, From immunological detection and identification to phenotypic and genotypic characterization of Xanthomonads pathogenic for small grains, Ph.D. thesis, Faculté des Sciences Agronomiques, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1996.
  49. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Biología Molecular de la Célula, Ediciones Omega S. A., Barcelona, Spain, 3rd edition, 1996.
  50. M. D. R. Rodicio and M. D. C. Mendoza, “Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica,” Enfermedades Infecciosas y Microbiologia Clinica, vol. 22, no. 4, pp. 238–245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Gevers, F. M. Cohan, J. G. Lawrence et al., “Re-evaluating prokaryotic species,” Nature Reviews, vol. 3, no. 9, pp. 733–739, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. H. E. O'Brien, S. Thakur, and D. S. Guttman, “Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective,” Annual Review of Phytopathology, vol. 49, pp. 269–289, 2011. View at Publisher · View at Google Scholar
  53. A. J. Valencia-Botín, Caracterización, identificación, colonización y repercusión agronómica de bacterias fitopatógenas en trigo, Tesis de Doctor en Ciencias, Colegio de Postgraduados, Montecillo, Mexico, 2007.