Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2014 (2014), Article ID 219159, 9 pages
http://dx.doi.org/10.1155/2014/219159
Research Article

Assessing the Spectral Separability of Flue Cured Tobacco Varieties Established on Different Planting Dates and under Varying Fertilizer Management Levels

1Kutsaga Research Station, P.O. Box 1909, Harare, Zimbabwe
2Tobacco Research Board, Kutsaga Research Station, P.O. Box 1909, Harare, Zimbabwe
3Department of Crop Science, University of Zimbabwe, Harare, Zimbabwe
4Department of Geography and Environmental Science, University of Zimbabwe, Harare, Zimbabwe

Received 30 September 2013; Revised 24 January 2014; Accepted 11 February 2014; Published 26 March 2014

Academic Editor: David Clay

Copyright © 2014 Ezekia Svotwa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Su, L. Fu, H. Chen, and L. Hong, “Balancing nutrient use for flue-cured tobacco,” Better Crops, vol. 90, no. 4, pp. 23–25, 2006. View at Google Scholar
  2. C. T. MacKown, S. J. Crafts-Brandner, and T. G. Sutton, “Early-season plant nitrate test for leaf yield and nitrate concentration of air-cured burley tobacco,” Crop Science, vol. 40, no. 1, pp. 165–170, 2000. View at Google Scholar · View at Scopus
  3. G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery,” Remote Sensing of Environment, vol. 82, no. 2-3, pp. 311–321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Mutanga, Hyperspectral remote sensing of tropical grass quality and quantity [Ph.D. thesis], Wageningen University. ITC, Wageningen, The Netherlands, 2004.
  5. J. G. Ferwerda, Measuring and mapping the variation of chemical components in foliage using hyperspectral remote sensing [Ph.D. thesis], Wageningen University. ITC, Wageningen, The Netherland, 2005.
  6. E. Boegh, H. Soegaard, N. Broge et al., “Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture,” Remote Sensing of Environment, vol. 81, no. 2-3, pp. 179–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Gitelson and M. N. Merzlyak, “Remote sensing of chlorophyll concentration in higher plant leaves,” Advances in Space Research, vol. 22, no. 5, pp. 689–692, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. T. M. Blackmer and J. S. Schepers, “Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn,” Journal of Production Agriculture, vol. 8, no. 1, pp. 56–60, 1995. View at Google Scholar · View at Scopus
  9. P. M. Hansen and J. K. Schjoerring, “Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression,” Remote Sensing of Environment, vol. 86, no. 4, pp. 542–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. G. P. Asner, “Biophysical and biochemical sources of variability in canopy reflectance,” Remote Sensing of Environment, vol. 64, no. 3, pp. 234–253, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. De Colstoun, and J. E. McMurtrey III, “Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance,” Remote Sensing of Environment, vol. 74, no. 2, pp. 229–239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. O. W. Liew, P. C. J. Chong, B. Li, and A. K. Asundi, “Signature optical cues: emerging technologies for monitoring plant health,” Sensors, vol. 8, no. 5, pp. 3205–3239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, and I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture,” Remote Sensing of Environment, vol. 90, no. 3, pp. 337–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Osborne, J. S. Schepers, D. D. Francis, and M. R. Schlemmer, “Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements,” Agronomy Journal, vol. 94, no. 6, pp. 1215–1221, 2002. View at Google Scholar · View at Scopus
  15. S. Graeff, D. Steffens, and S. Schubert, “Use of reflectance measurements for the early detection of N, P, Mg, and Fe deficiencies in Zea mays L,” Journal of Plant Nutrition and Soil Science, vol. 164, pp. 445–450, 2001. View at Google Scholar
  16. S. Graeff and W. Claupein, “Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements,” European Journal of Agronomy, vol. 19, no. 4, pp. 611–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Aase, A. B. Frank, and R. J. Lorenz, “Radiometric reflectance measurements of northern great plains rangeland and crested wheatgrass pastures,” Journal of Range Management, vol. 40, no. 4, pp. 299–302, 1987. View at Google Scholar
  18. F. Stocks, Tobacco Production in Zimbabwe, Nehanda Publishers (Pvt), Harare, Zimbabwe, 1994.
  19. D. Magadlela, “A smoky affair: challenges facing some small-holder burley tobacco producers in Zimbabwe,” Zambezia, vol. 24, no. 1, pp. 13–30, 1987. View at Google Scholar
  20. R. D. Jackson, P. N. Slater, and P. J. Pinter Jr., “Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres,” Remote Sensing of Environment, vol. 13, no. 3, pp. 187–208, 1983. View at Google Scholar · View at Scopus
  21. J. U. H. Eitel, R. F. Keefe, D. S. Long, A. S. Davis, and L. A. Vierling, “Active ground optical remote sensing for improved monitoring of seedling stress in nurseries,” Sensors, vol. 10, no. 4, pp. 2843–2850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Benedetti and P. Rossini, “On the use of NDVI profiles as a tool for agricultural statistics: the case study of wheat yield estimate and forecast in Emilia Romagna,” Remote Sensing of Environment, vol. 45, no. 3, pp. 311–326, 1993. View at Google Scholar · View at Scopus
  23. E. Svotwa, B. Maasdorp, A. Murwira, and A. Masuka, “Selection of optimum vegetative indices for the assessment of tobacco float seedlings response to fertilizer management,” ISRN Agronomy, vol. 2012, Article ID 450473, 10 pages, 2012. View at Publisher · View at Google Scholar
  24. Y. Curnel and R. Oger, “Agrophenology indicators from remote sensing: state of the art,” in ISPRS Archives XXXVI-8/W48 Workshop Proceedings: Remote Sensing Support to Crop Yield Forecast and Area Estimates, pp. 31–38, Stresa, Italy, November-December 2006.
  25. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sensing of Environment, vol. 8, no. 2, pp. 127–150, 1979. View at Google Scholar · View at Scopus
  26. Tobacco Research Board (TRB), Flue Cured Tobacco Recommendations, TRB, Harare, Zimbabwe, 2010.
  27. U. Mazarura and C. Chisango, “Effects of long term cropping systems on soil chemical properties,” Asian Journal of Agriculture and Rural Development, vol. 2, no. 4, pp. 632–640, 2012. View at Google Scholar
  28. T. A. Fasheun and E. E. Balogun, “Some spectral signatures of grain amaranthus (Amaranthus cruentus, L),” International Journal of Remote Sensing, vol. 13, no. 11, pp. 2009–2015, 1992. View at Google Scholar · View at Scopus
  29. G. Peng, L. Deng, W. Cui, T. Ming, and W. Shen, “Remote sensing monitoring of tobacco field based on phenological characteristics and time series image-A case study of chengjiang county, Yunnan Province, China,” Chinese Geographical Science, vol. 19, no. 2, pp. 186–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Nageswara-Rao, J. H. Williams, M. V. K. Sivakumar, and K. D. R. Wadia, “Effect of water deficit at different growth phases of groundnut. II. Response to drought during pre-flowering phas,” Agronomy Journal, vol. 80, pp. 431–438, 1988. View at Google Scholar
  31. J. M. Moore, “Irrigation: a proper technique guide to irrigating tobacco,” 2010, http://www.tobaccofarmquarterly.com/.
  32. I. Gondola, “Weather conditions and nitrogen supply on ripening rate, yield and quality of flue-cured tobacco,” in CORESTA Congress, Harare, Zimbabwe, 1994.
  33. R. Devndra, Y. S. Veeraj, M. U. Kumar, and K. S. K. Sastry, “Leaf area duration and its relationship to productivity in early rice cultivars,” Proceedings of the National Academy of Sciences, India Section B, vol. B49, no. 6, pp. 693–696, 1983. View at Google Scholar
  34. M. Saleem, M. Maqsood, and M. Ul-Hassan, “Leaf area duration and total dry matter responses of cotton to integrated plant nutrition and irrigation scheduling,” Crop Management, vol. 8, no. 1, 2009. View at Publisher · View at Google Scholar
  35. D. Jiang, N.-B. Wang, X.-H. Yang, and J.-H. Wang, “Study on the interaction between NDVI profile and the growing status of crops,” Chinese Geographical Science, vol. 13, no. 1, pp. 62–65, 2003. View at Google Scholar · View at Scopus
  36. C. Yang, J. H. Everitt, and J. M. Bradford, “Using high resolution QuickBird satellite imagery for cotton yield estimation,” in ASAE Annual International Meeting 2004, pp. 893–904, paper number 041119, August 2004. View at Scopus