Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2016, Article ID 8203720, 8 pages
http://dx.doi.org/10.1155/2016/8203720
Research Article

Characteristic Profiles of an Original Drink Sap from Male and Female Deglet Nour Palm (Phoenix dactylifera L.) during Collection Period

1Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Laboratoire Analyse, Valorisation et Sécurité des Aliments, route de Soukra, 3038 Sfax, Tunisia
2Gembloux Agro Bio-Tech, Université de Liège, Unité de Technologie des Industries Agro-Alimentaires, Passage des Déportés 2, 5030 Gembloux, Belgium

Received 5 November 2015; Accepted 17 January 2016

Academic Editor: David Clay

Copyright © 2016 Ines Makhlouf-Gafsi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Zehdi, H. Sakka, A. Rhouma, A. Ould Mohamed Salem, M. Marrakchi, and M. Trifi, “Analysis of Tunisian date palm germplasm using simple sequence repeat primers,” African Journal of Biotechnology, vol. 3, no. 4, pp. 215–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Barreveld, “Date palm products,” FAO Agricultural Services Bulletin 101, FAO, Rome, Italy, 1993. View at Google Scholar
  3. I. Makhlouf-gafsi, A. Mokni-ghribi, B. Bchir et al., “Foamability and foam stability of male and female date palm sap (Phoenix dactylifera L.) during the collection period,” Food Biophysics, vol. 10, no. 3, pp. 360–367, 2015. View at Publisher · View at Google Scholar
  4. Food and Agriculture Organization of the United Nations, “AFNOR NF V 04-207,” in Lait et Produits Laitiers, vol. 1, pp. 137–138, Food and Agriculture Organization of the United Nations, Rome, Italy, 1999. View at Google Scholar
  5. Food and Agriculture Organization of the United Nations, “AFNOR NF V 04-211,” in Lait et Produits Laitiers, vol. 1, pp. 195–198, Food and Agriculture Organization of the United Nations, Rome, Italy, 1999. View at Google Scholar
  6. Official Journal of the European Communities (OJEC), “Determination of amino acid in feed by HPLC—development of an optimal hydrolysis and extraction procedure by the EU Commission DGXII in three international collaborative studies,” Official Journal of the European Communities, vol. L 257, pp. 14–28, 1998. View at Google Scholar
  7. B. Bchir, S. Besbes, R. Karoui, M. Paquot, H. Attia, and C. Blecker, “Osmotic dehydration kinetics of pomegranate seeds using date juice as an immersion solution base,” Food and Bioprocess Technology, vol. 5, no. 3, pp. 999–1009, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Ben Thabet, S. Besbes, H. Attia et al., “Physicochemical characteristics of date sap ‘lagmi’ from deglet nour palm (Phoenix Dactylifera L.),” International Journal of Food Properties, vol. 12, no. 3, pp. 659–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Kilincceker, I. S. Dogan, and E. Kucukoner, “Effect of edible coatings on the quality of frozen fish fillets,” LWT—Food Science and Technology, vol. 42, no. 4, pp. 868–873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Dalibard, “Overall view on the tradition of tapping palm trees and prospects for animal production,” Livestock Research for Rural Development, vol. 11, no. 1, pp. 36–77, 1999. View at Google Scholar · View at Scopus
  11. F. I. Obahiagbon and A. U. Osagie, “Sugar and macrominerals composition of sap produced by Raphia hookeri palms,” African Journal of Biotechnology, vol. 6, no. 6, pp. 744–750, 2007. View at Google Scholar · View at Scopus
  12. F. I. Obahiagbon, “A review of the origin, morphology, cultivation, economic products, health and physiological implications of Raphia palm,” African Journal of Food Science, vol. 3, no. 13, pp. 447–453, 2009. View at Google Scholar
  13. I. Makhlouf-Gafsi, A. Mokni-Ghribi, B. Bchir, H. Attia, C. Blecker, and S. Besbes, “Physico-chemical properties and amino acid profiles of sap from Tunisian date palm,” Scientia Agricola, vol. 73, no. 1, pp. 85–90, 2016. View at Publisher · View at Google Scholar
  14. D. Barh and B. C. Mazumdar, “Comparative nutritive values of palm saps before and after their partial fermentation and effective use of wild date (Phoenix sylvestris Roxb.) sap in treatment of anemia,” Research Journal of Medicine and Medical Sciences, vol. 3, no. 2, pp. 173–176, 2008. View at Google Scholar
  15. J. P. Borel, A. Randoux, F. X. Marquet et al., Biochimie Dynamique, De Boeck and Larcier, Département de Boeck Université, Paris, France, 1997.
  16. W. N. Fischer, B. André, D. Rentsch et al., “Amino acid transport in plants,” Trends in Plant Science, vol. 3, no. 5, pp. 188–195, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. K. B. Walsh, B. H. Ng, and G. E. Chandler, “Effects of nitrogen nutrition on xylem sap composition of Casuarinaceae,” Plant and Soil, vol. 81, no. 2, pp. 291–293, 1984. View at Publisher · View at Google Scholar · View at Scopus
  18. S.-I. Nakamura, A. Watanabe, P. Chongpraditnun et al., “Analysis of phloem exudate collected from fruit-bearing stems of coconut palm: palm trees as a source of molecules circulating in sieve tubes,” Soil Science and Plant Nutrition, vol. 50, no. 5, pp. 739–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Amiard, A. Morvan-Bertrand, J.-B. Cliquet et al., “Carbohydrate and amino acid composition in phloem sap of Lolium perenne L. before and after defoliation,” Canadian Journal of Botany, vol. 82, no. 11, pp. 1594–1601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. W. Ho, W. M. W. Aida, M. Y. Maskat, and H. Osman, “Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar,” Food Chemistry, vol. 102, no. 4, pp. 1156–1162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Matés, J. A. Segura, J. A. Campos-Sandoval et al., “Glutamine homeostasis and mitochondrial dynamics,” The International Journal of Biochemistry & Cell Biology, vol. 41, no. 10, pp. 2051–2061, 2009. View at Publisher · View at Google Scholar
  22. E. Roth, “Nonnutritive effects of glutamine,” The Journal of Nutrition, vol. 138, no. 10, pp. 2025S–2031S, 2008, 7th Amino Acid Assessment Workshop. View at Google Scholar
  23. S. I. Faparusi, “Effect of pH on the preservation of palm wine by sulfite,” Journal of Applied Microbiology, vol. 18, no. 1, pp. 122–123, 1969. View at Google Scholar
  24. P. I. Eapen, “Palm wine studies,” in Proceedings of the 17th Annual Report of the Nigerian Institute for Oil Palm Research, pp. 78–79, Benin, Nigeria, 1970-1971.
  25. W. Van Pee and J. G. Swings, “Chemical and microbiological studies on Congolese palm wines. (Elaeis guineensis),” East African Agricultural and Forestry Journal, vol. 36, no. 3, pp. 331–314, 1971. View at Publisher · View at Google Scholar
  26. I. Ben Thabet, F. Francis, E. De Pauw et al., “Characterisation of proteins from date palm sap (Phoenix dactylifera L.) by a proteomic approach,” Food Chemistry, vol. 123, no. 3, pp. 765–770, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Styer, Regulating inositol biosynthesis in plants: myo-inositol phosphate synthase and myo-inositol monophosphatase [Ph.D. thesis], Faculty of Virginia Polytechnic Institute and State University, Blacksburg, Va, USA, 2000.
  28. F. A. Loewus and P. P. N. Murthy, “Myo-inositol metabolism in plants: a review,” Plant Sciences, vol. 150, pp. 1–19, 2000. View at Google Scholar