Table of Contents Author Guidelines Submit a Manuscript
International Journal of Agronomy
Volume 2017 (2017), Article ID 8216390, 6 pages
https://doi.org/10.1155/2017/8216390
Research Article

Characteristics Defining Broccoli Cultivars from Different Seed Producers

1Área de Agricultura, Centro Tecnológico Nacional Agroalimentario Extremadura (CTAEX), 06195 Villafranco del Guadiana, Badajoz, Spain
2Departamento de Genómica y Postcosecha, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
3Departamento de Hortofruticultura, Centro de Investigación “La Orden-Valdesequera” (CICYTEX), Junta de Extremadura, Guadajira, 06187 Badajoz, Spain
4Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06071 Badajoz, Spain

Correspondence should be addressed to Julio Salguero; se.xenu@oreuglas

Received 6 March 2017; Accepted 24 July 2017; Published 28 August 2017

Academic Editor: Chandrakanth Emani

Copyright © 2017 Elena Ordiales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Fahey, Y. Zhang, and P. Talalay, “Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10367–10372, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. A. F. Brown, G. G. Yousef, E. H. Jeffery et al., “Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection,” Journal of the American Society for Horticultural Science, vol. 127, no. 5, pp. 807–813, 2002. View at Google Scholar · View at Scopus
  3. E. N. C. Renaud, E. T. Lammerts Van Bueren, J. R. Myers et al., “Variation in broccoli cultivar phytochemical content under organic and conventional management systems: Implications in breeding for nutrition,” PLoS ONE, vol. 9, no. 7, Article ID e95683, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. G. J. Stables, A. F. Subar, B. H. Patterson et al., “Changes in vegetable and fruit consumption and awareness among US adults: Results of the 1991 and 1997 5 A Day for Better Health Program surveys,” Journal of the American Dietetic Association, vol. 102, no. 6, pp. 809–817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ordiales, J. I. Gutiérrez, L. Zajara, J. Gil, and M. Lanzke, “Assessment of utilization of sheep wool pellets as organic fertilizer and soil amendment in processing tomato and broccoli,” Modern Agricultural Science and Technology, vol. 2, no. 2, pp. 20–35, 2016. View at Google Scholar
  6. D. K. Y. Tan, A. H. Wearing, K. G. Rickert, and C. J. Birch, “Broccoli yield production and quality can be determined by cultivar and temperature but not photoperiod in south-east Queensland,” Australian Journal of Experimental Agriculture, vol. 39, pp. 901–909, 1999. View at Google Scholar · View at Scopus
  7. H. T. Alrich, K. Salandanan, P. Kendall et al., “Cultivar choice provides options for local production of organic and conventionally produced tomatoes with higher quality and antioxidant content,” Journal of the Science of Food and Agriculture, vol. 90, no. 15, pp. 2548–2555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. W. Farnham and H. F. Harrrison, “Using self-compatible inbreeds of broccoli as seed producers,” HortScience, vol. 38, pp. 85–87, 2003. View at Google Scholar
  9. R. Gray, “Broccoli Brassica oleracea L. (Italica group),” in Genetic Improvement of Vegetables Crops, G. Kalloo and B. O. Bergh, Eds., Pergamon Press, Oxford, 1993. View at Google Scholar
  10. B. Chung, “Effect of plant density on the sequential harvest yield of broccoli,” Australian Journal of Experimental Agriculture, vol. 25, no. 4, pp. 959–962, 1985. View at Publisher · View at Google Scholar · View at Scopus
  11. Casar, L. M. Muñoz-Guerra, E. Ordiales, and J. López, “Efectos de fertilizantes con el inhibidor de la nitrificación 3, 4 dimetilpirazol fosfato en la producción, rentabilidad y calidad nutricional de un cultivo de brócoli,” Jornadas de Horticultura, vol. 49, pp. 69–74, 2007. View at Google Scholar
  12. M. Boersma, A. J. Gracie, and P. H. Brown, “Relationship between growth rate and the development of hollow stem in broccoli,” Crop and Pasture Science, vol. 60, no. 10, pp. 995–1001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Bakker, C. J. Swanton, and A. W. McKeown, “Broccoli growth in response to increasing rates of pre-plant nitrogen. I. Yield and quality,” Canadian Journal of Plant Science, vol. 89, no. 3, pp. 527–537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Vidal-Aragón, M. Lozano, J. Bernalte et al., “Productive characteristics and volatile compounds of seven broccoli cultivars,” Italian Journal of Food Science, vol. 21, no. 1, pp. 17–28, 2009. View at Google Scholar · View at Scopus
  15. S. B. Sterrett, K. G. Haynes, and C. P. Savage Jr., “Cluster analyses on quality attributes identify broccoli cultivars suitable for early and main-season harvests on the Eastern Shore of Virginia,” HortTechnology, vol. 14, no. 3, pp. 376–380, 2004. View at Google Scholar · View at Scopus
  16. H. C. Kaymak, F. Yarali, and I. Guvenc, “Effect of transplant age on growth and yield of broccoli (Brassica oleracea var. italica),” Indian Journal of Agricultural Sciences, vol. 79, no. 12, pp. 972–975, 2009. View at Google Scholar · View at Scopus
  17. D. L. Schellenberg, A. D. Bratsch, and Z. Shen, “Large single-head broccoli yield as affected by plant density, nitrogen, and cultivar in a pasticulture system,” HortTechnology, vol. 19, pp. 792–795, 2009. View at Google Scholar · View at Scopus
  18. S. Stamatiadis, M. Werner, and M. Buchanan, “Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California),” Applied Soil Ecology, vol. 12, no. 3, pp. 217–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. S. B. Sterret, J. W. Mapp Jr., and C. W. Coale, “Feasibility of broccoli as a new enterprise. A systems approach,” HortScience, vol. 25, pp. 638–641, 1990. View at Google Scholar
  20. S. B. Sterret, C. W. Coale Jr., and C. P. Savage Jr., “Comparison of managements techniques for broccoli production using a system approach,” HortScience, vol. 26, pp. 599–602, 1991. View at Google Scholar
  21. S. J. Kays, “Preharvest factors affecting appearance,” Postharvest Biology and Technology, vol. 15, no. 3, pp. 233–247, 1999. View at Publisher · View at Google Scholar · View at Scopus