International Journal of Analytical Chemistry
 Journal metrics
Acceptance rate35%
Submission to final decision66 days
Acceptance to publication54 days
CiteScore2.200
Impact Factor1.678

Indexing news

International Journal of Analytical Chemistry has recently been accepted into Food Science and Technology Abstracts.

Go to Table of Contents

 Journal profile

International Journal of Analytical Chemistry publishes research reporting new experimental results and chemical methods, especially in relation to important analytes, difficult matrices, and topical samples.

 Editor spotlight

International Journal of Analytical Chemistry maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

HPLC-MS/MS-Mediated Analysis of the Pharmacokinetics, Bioavailability, and Tissue Distribution of Schisandrol B in Rats

Schisandrol B, a lignan isolated from dried Schisandra chinensis fruits, has been shown to exhibit hepatoprotective, cardioprotective, renoprotective, and memory-enhancing properties. This study sought to design a sensitive and efficient HPLC-MS/MS approach to measuring Schisandrol B levels in rat plasma and tissues in order to assess the pharmacokinetics, oral bioavailability, and tissue distributions of this compound in vivo. For this analysis, bifendate was chosen as an internal standard (IS). A liquid-liquid extraction (LLE) approach was employed for the preparation of samples that were subsequently separated with an Agilent ZORBAX Eclipse XDB-C18 (4.6 × 150 mm, 5 μm) column with an isocratic mobile phase consisting of methanol and water containing 5 mM ammonium acetate and 0.1% formic acid (90 : 10, v/v). A linear calibration curve was obtained over the 5–2000 ng/mL and 1–1000 ng/mL ranges for plasma samples and tissue homogenates, respectively. This established method was then successfully applied to investigate the pharmacokinetics, oral bioavailability, and tissue distributions of Schisandrol B in Sprague-Dawley (SD) rats that were intravenously administered 2 mg/kg of Schisandrol B monomer, intragastrically administered Schisandrol B monomer (10 mg/kg), or intragastrically administered 6 mL/kg SCE (equivalent to 15 mg/kg Schisandrol B monomer). The oral absolute bioavailability of Schisandrol B following intragastric Schisandrol B monomer and SCE administration was approximately 18.73% and 68.12%, respectively. Tissue distribution studies revealed that Schisandrol B was distributed throughout several tested tissues, with particular accumulation in the liver and kidneys. Our data represent a valuable foundation for future studies of the pharmacologic and biological characteristics of Schisandrol B.

Research Article

Assessment of Some Physicochemical Parameters and Heavy Metals in Hand-Dug Well Water Samples of Kafta Humera Woreda, Tigray, Ethiopia

Groundwater is one of the most important sources of drinking water in Kafta Humera Woreda; hence, it is important to assess the quality of these water sources. The aim of this study was to assess the levels of some physicochemical parameters and heavy metals in hand-dug well water sources of Kafta Humera Woreda. The results showed that the physicochemical concentrations of the hand-dug well water samples were given as follows: temperature, 27.67 ± 0.15 to 28.30 ± 0.25°C; pH, 6.90 ± 0.33 to 8.20 ± 0.36; dissolved oxygen, 5.60 ± 0.06 to 6.2 ± 0.04 mg/L; turbidity, 1.67 ± 0.02 to 1.89 ± 0.03 NTU; EC, 148.50 ± 0.89 to 932.00 ± 0.98 μS/cm; TDS, 105.80 ± 0.62 to 664.28 ± 0.70 mg/L; total hardness, 71.80 ± 3.05 to 295.30 ± 2.38 mg/L; total alkalinity, 75 ± 5.0 to 215 ± 5.0 mg/L; calcium, 12.02 ± 0.82 to 75.88 ± 0.93 mg/L; magnesium, 9.80 ± 0.80 to 25.70 ± 0.17 mg/L; potassium, 0.130 ± 0.003 to 0.86 ± 0.04 mg/L; sodium, 2.20 ± 0.16 to 12.75 ± 0.87 mg/L; chloride, 12.86 ± 0.02 to 42.72 ± 0.20 mg/L; sulfate, 17.24 ± 0.96 to 118.67 ± 0.46 mg/L; phosphate, 0.018 ± 0.005 to 0.020 ± 0.002 mg/L; and nitrate, 1.86 ± 0.03 to 5.43 ± 0.06 mg/L. Generally, the concentrations of most physicochemical parameters of the hand-dug well water samples of Kafta Humera Woreda were within the permissible limit of World Health Organization and Ethiopian Standard Agency guideline for drinking water. The statistical Pearson’s correlation analysis on the water quality parameters revealed that all parameters are more or less correlated with each other. Electrical conductivity and total dissolved solids of the water samples were found to be significantly correlated with total hardness (r = 0.989), total alkalinity (r = 0.827), calcium (r = 0.988), magnesium (r = 0.881), sodium (r = 0.995), potassium(r = 0.996), chloride (r = 0.998), sulfate (r = 1), and nitrate ions (r = 0.972). Out of the selected seven heavy metals, Fe, Cu, Zn, Mn, Cr, Cd, and Pb, only iron was detected in all water samples and its concentration was above the permissible limit of WHO and ESA for drinking water. Therefore, the government should adopt some treatment technologies such as sedimentation and aeration to minimize the concentration of iron for safe drinking the water to the community of Kafta Humera Woreda.

Research Article

Analytical Quality by Design Approach of Reverse-Phase High-Performance Liquid Chromatography of Atorvastatin: Method Development, Optimization, Validation, and the Stability-Indicated Method

The use of analytical quality by design (AQbD) approach in the optimization of the high-performance liquid chromatography (RP-HPLC) method is a novel tool. Three factors and three levels of Box–Behnken statistical design (BBD) were used for method optimization and analysis of atorvastatin. The mobile phase (acetonitrile: water), flow rate (Rt), and UV wavelength were used as independent variables. Their effects were observed in the area of the chromatogram (AU), retention time (Rt, min), and tailing factor (%). The optimized HPLC condition was found as acetonitrile:water (50 : 50), flow rate (0.68 ml/min), and UV wave length (235 nm). It gives the retention time of 2.43 min with the linearity range of 5–30 μg/ml with a high regression value (r2 = 0.999). The method was found to be precise and accurate with low % RSD (<5%). The refrigeration stability indicated that atorvastatin was stable. The force degradation study showed that the atorvastatin was fully unstable in UV light and stable in 0.1 M basic condition. It concluded that this QbD optimized method is suitable for quantification of the atorvastatin from the formulation as well as pharmacokinetic parameters.

Research Article

Total Oxidation of Isopropanol in Its Liquid Phase, at a Low Temperature in the Presence of Prepared and Characterized Zinc Oxide

The complete oxidation of isopropanol in its liquid phase at a low temperature was studied in the presence of zinc oxide (ZnO). This solid was prepared with the precipitation method. Structural analysis (infrared in Fourier transform and diffraction of X-rays) and textured (adsorption/desorption of N2) were conducted for the wurtzite structure results, an IV type isotherm with a type H3 hysteresis. This solid presents a good catalytic activity against the complete oxidation of isopropanol, a constant of selectivity equal to 1; however, the studied temperatures were 40, 60, and 80°C. In addition, a kinetic study of the oxidation was performed and showed that the reaction follows a successive mechanism isopropanol-acetone-carbon dioxide. The low value of the apparent energy of the activation of this solid confirms the high value of the initial rate of the catalytic oxidation reaction of isopropanol in the temperature range studied.

Research Article

Optimization of 25% Sulfosalicylic Acid Protein-to-Creatinine Ratio for Screening of Low-Grade Proteinuria

Proteinuria is an important prognostic marker in the diagnosis and management of kidney diseases. Sulfosalicylic acid method (SSA) is a simple, low cost, qualitative test, widely used to assess proteinuria. The aim of this study was to optimize SSA test as a quantitative screening tool to assess proteinuria at lower excretory levels which would facilitate the screening and early diagnosis of renal impairment using protein-to-creatinine ratio (PCR). The study was conducted in two phases. In phase I, optimum SSA percentage to detect low-grade proteinuria was selected by comparing the performance of 3%, 6%, and 25% SSA methods in manual spectrophotometric analysis. In phase II, clinical applicability of the optimized method was evaluated using retained urine samples of patients with chronic kidney disease (CKD) assessed for urine protein by the pyrogallol red (PGR) method in a tertiary care hospital in Sri Lanka. Optimized 25% SSA protein-to-creatinine ratio (PCR) was compared with PGR PCR and albumin-to-creatinine ratio (ACR). Sensitivity, specificity, degree of agreement, correlation, and diagnostic accuracy were evaluated. Turbidimetric analysis using 25% SSA was linear in the range 3–50 mg/dL giving the highest analytical sensitivity. The test yielded a sensitivity of 86.5% and specificity of 96.5% and a degree of agreement of 5 mg/dL with the PGR method. Optimal cut-off for 25% SSA PCR in receiver operating characteristic analysis was 166 mg/g. Spearman’s correlation coefficient for 25% SSA PCR versus ACR was r = 0.823, , and for 25% SSA PCR versus PGR PCR was r = 0.913, . The 25% SSA PCR has a sensitivity of 92% against ACR, the current prognostic marker for proteinuria in patients with CKD. The 25% SSA test is a simple method, and it performs satisfactorily as a screening test with a cut-off for PCR optimized at 166 mg/g. The test merits further evaluation due to its low cost.

Research Article

Rapid Identification and Systematic Mechanism of Flavonoids from Potentilla freyniana Bornm. Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometry and Network Pharmacology

Potentilla freyniana Bornm. (P. freyniana), belonging to the family Rosaceae, has been used as a folk medicine in China. However, as we know, the constituents and the systematic elucidation of the mechanism were not fully investigated. Therefore, it is necessary to develop a rapid method using LC-MS and network pharmacology for the detection and identification of constituents and the systematic mechanism of P. freyniana. Firstly, the flavonoids were detected and identified based on ultra-high-performance liquid chromatography coupled with Quadrupole-Exactive Focus Orbitrap MS (UHPLC-Q-Exactive Orbitrap MS). After that, the potential targets of those constituents were obtained by database mining. Then, the core targets were predicted by protein-protein interaction network and network analysis. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out via DAVID. This finding revealed that P. freyniana possessed 43 flavonoids (40 of them were first reported) with 23 core target genes, which are associated with PI3K-Akt, MAPK, TNF signaling pathway, and pathway in cancer. This study demonstrated the multicompound, multitarget, and multimechanism of P. freyniana, which are very beneficial to develop the further study and utilization of this plant including the material basis and quality control research.

International Journal of Analytical Chemistry
 Journal metrics
Acceptance rate35%
Submission to final decision66 days
Acceptance to publication54 days
CiteScore2.200
Impact Factor1.678
 Submit