Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011, Article ID 214747, 8 pages
http://dx.doi.org/10.1155/2011/214747
Research Article

Optimization of Molecularly Imprinted Polymer Method for Rapid Screening of 17β-Estradiol in Water by Fluorescence Quenching

Department of Chemistry, Carleton University, Ottawa, ON, Canada K1S 5B6

Received 21 January 2011; Revised 3 May 2011; Accepted 16 May 2011

Academic Editor: Stig Pedersen-Bjergaard

Copyright © 2011 Yu Yang and Edward P. C. Lai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Yan and H. R. Kyung, “Characteristic and synthetic approach of molecularly imprinted polymer,” International Journal of Molecular Sciences, vol. 7, no. 5-6, pp. 155–178, 2006. View at Google Scholar · View at Scopus
  2. W. H. Zhou, C. H. Lu, X. C. Guo, F. R. Chen, H. H. Yang, and X. R. Wang, “Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition,” Journal of Materials Chemistry, vol. 20, no. 5, pp. 880–883, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. D. Zakaria, N. A. Yusof, J. Haron, and A. H. Abdullah, “Synthesis and evaluation of a molecularly imprinted polymer for 2,4-Dinitrophenol,” International Journal of Molecular Sciences, vol. 10, no. 1, pp. 354–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Kueseng, M. L. Noir, B. Mattiasson, P. Thavarungkul, and P. Kanatharana, “Molecularly imprinted polymer for analysis of trace atrazine herbicide in water,” Journal of Environmental Science and Health B, vol. 44, no. 8, pp. 772–780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Prasad, K. P. Prathish, J. M. Gladis, G. R. K. Naidu, and T. P. Rao, “Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine,” Sensors and Actuators B, vol. 123, no. 1, pp. 65–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. P. Prathish, K. Prasad, T. P. Rao, and M. V. S. Suryanarayana, “Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents. Part I. Methylphosphonic acid,” Talanta, vol. 71, no. 5, pp. 1976–1980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Alizadeh and M. Akhoundian, “A novel potentiometric sensor for promethazine based on a molecularly imprinted polymer (MIP): the role of MIP structure on the sensor performance,” Electrochimica Acta, vol. 55, no. 10, pp. 3477–3485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhang, Y. Wang, R. Lv, and L. Xu, “Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film,” Electrochimica Acta, vol. 55, no. 12, pp. 4039–4044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Patel, P. S. Sharma, and B. B. Prasad, “Trace-level sensing of creatine in real sample using a zwitterionic molecularly imprinted polymer brush grafted to sol-gel modified graphite electrode,” Thin Solid Films, vol. 518, no. 10, pp. 2847–2853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Wu, L. Feng, Y. Tan, and J. Hu, “An optical reflected device using a molecularly imprinted polymer film sensor,” Analytica Chimica Acta, vol. 653, no. 1, pp. 103–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. K. Lavine, D. J. Westover, N. Kaval, N. Mirjankar, L. Oxenford, and G. K. Mwangi, “Swellable molecularly imprinted polyN-(N-propyl)acrylamide particles for detection of emerging organic contaminants using surface plasmon resonance spectroscopy,” Talanta, vol. 72, no. 3, pp. 1042–1048, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. B. Prasad, M. P. Tiwari, R. Madhuri, and P. S. Sharma, “Development of a highly sensitive and selective hyphenated technique (molecularly imprinted micro-solid phase extraction fiber-molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid,” Analytica Chimica Acta, vol. 662, no. 1, pp. 14–22, 2010. View at Google Scholar
  13. Y. Yang and E. P. C. Lai, “An investigation of porous structure in molecularly imprinted polymer for sensor development: non-linear fluorescence quenching of 17β-estradiol bound inside MIP submicron particles by sodium nitrite and methacrylamide,” Journal of Photochemistry and Photobiology A, vol. 213, no. 2-3, pp. 123–128, 2010. View at Google Scholar
  14. J. Zhang, R. Badugu, and J. R. Lakowicz, “Fluorescence quenching of CdTe nanocrystals by bound gold nanoparticles in aqueous solution,” Plasmonics, vol. 3, no. 1, pp. 3–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Y. Lim, J. H. Kim, J. S. Lee, and C. B. Park, “Gold nanoparticle enlargement coupled with fluorescence quenching for highly sensitive detection of analytes,” Langmuir, vol. 25, no. 23, pp. 13302–13305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mayilo, M. A. Kloster, M. Wunderlich et al., “Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T,” Nano Letters, vol. 9, no. 12, pp. 4558–4563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Wei, A. Molinelli, and B. Mizaikoff, “Molecularly imprinted micro and nanospheres for the selective recognition of 17beta-estradiol,” Biosensors and Bioelectronics, vol. 21, no. 10, pp. 1943–1951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Ghosh, A. Pal, S. Kundu, S. Nath, and T. Pal, “Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles,” Chemical Physics Letters, vol. 395, no. 4–6, pp. 366–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Leese, “Corrections for inner-filter effects in fluorescence quenching measurements via right-angle and front-surface illumination,” Analytical Chemistry, vol. 50, no. 8, pp. 1193–1197, 1978. View at Google Scholar · View at Scopus
  20. Z. B. Zhang and J. Y. Hu, “Selective removal of estrogenic compounds by molecular imprinted polymer (MIP),” Water Research, vol. 42, no. 15, pp. 4101–4108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Yang, E. P. C. Lai, and M. Liu, “Spectroscopic analysis of poly (methacrylic acid-co-ethylene glycol dimethacrylate) submicron particles by fluorescence emission and light scattering upon binding with 17β-estradiol in water treatment,” Open Colloid Science Journal, vol. 3, no. 8, pp. 1–8, 2010. View at Google Scholar
  22. D. Zhao and T. M. Swager, “Sensory responses in solution vs solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s,” Macromolecules, vol. 38, no. 22, pp. 9377–9384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, NY, USA, 3rd edition, 2006.
  24. E. P. C. Lai, Z. D. Maleki, and S. Wu, “Characterization of molecularly imprinted and nonimprinted polymer submicron particles specifically tailored for removal of trace 17β-estradiol in water treatment,” Journal of Applied Polymer Science, vol. 116, no. 3, pp. 1499–1508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko et al., “Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes,” Analyst, vol. 124, no. 3, pp. 331–334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. DeMaleki, E. P. C. Lai, and E. Dabek-Zlotorzynska, “Capillary electrophoresis characterization of molecularly imprinted polymer particles in fast binding with 17beta-estradiol,” Journal of Separation Science, vol. 33, no. 17-18, pp. 2796–2803, 2010. View at Publisher · View at Google Scholar · View at Scopus