Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011 (2011), Article ID 401216, 10 pages
http://dx.doi.org/10.1155/2011/401216
Research Article

Analysing the Temperature Effect on the Competitiveness of the Amine Addition versus the Amidation Reaction in the Epoxidized Oil/Amine System by MCR-ALS of FTIR Data

Chemometrics, Qualimetrics, and Nanosensors Group, Analytical Chemistry and Organic Chemistry Department, Rovira i Virgili University, Marcel·lí Domingo s/n, 43007 Tarragona, Spain

Received 12 January 2011; Revised 9 March 2011; Accepted 28 April 2011

Academic Editor: Beata Walczak

Copyright © 2011 Vanessa del Río et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Earls, J. E. White, L. C. López, Z. Lysenko, M. L. Dettloff, and M. J. Null, “Amine-cured ω-epoxy fatty acid triglycerides: fundamental structure-property relationships,” Polymer, vol. 48, no. 3, pp. 712–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Mijović, S. Andjelić, C. F. W. Yee, F. Bellucci, and L. Nicolais, “A study of reaction kinetics by near-infrared spectroscopy. 2. Comparison with dielectric spectroscopy of model and multifunctional epoxy/amine systems,” Macromolecules, vol. 28, no. 8, pp. 2797–2806, 1995. View at Google Scholar · View at Scopus
  3. J. T. Wang, B. G. Li, H. Fan, Z. Y. Bu, and C. J. Xu, “Nonisothermal reaction, thermal stability and dynamic mechanical properties of epoxy system with novel nonlinear multifunctional polyamine hardener,” Thermochimica Acta, vol. 511, p. 51, 2010. View at Google Scholar
  4. F. Fraga and E. Rodríguez Núñez, “Activation energies for the epoxy system BADGE n = 0/m-XDA obtained using data from thermogravimetric analysis,” Journal of Applied Polymer Science, vol. 80, no. 5, pp. 776–782, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Olmos, A. Loayza, and J. González-Benito, “Phase-separation process in a poly(methyl methacrylate)-modified epoxy system: a novel approach to understanding the effect of the curing temperature on the final morphology,” Journal of Applied Polymer Science, vol. 117, no. 5, pp. 2695–2706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. F. Ghesti, J. L. De Macedo, V. S. Braga et al., “Application of raman spectroscopy to monitor and quantify ethyl esters in soybean oil transesterification,” Journal of the American Oil Chemists' Society, vol. 83, no. 7, pp. 597–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Challis, M. E. Unwin, D. L. Chadwick et al., “Following network formation in an epoxy/amine system by ultrasound, dielectric, and nuclear magnetic resonance measurements: a comparative study,” Journal of Applied Polymer Science, vol. 88, no. 7, pp. 1665–1675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Fedtke, J. Haufe, E. Kahlert, and G. Müller, “Cationic copolymerization of phenyl glycidyl ether with lactones: characterization of the reaction mixture with chromatographic methods,” Angewandte Makromolekulare Chemie, vol. 255, pp. 53–59, 1998. View at Google Scholar · View at Scopus
  9. L. A. Rodríguez-Guadarrama, “Application of online near infrared spectroscopy to study the kinetics of anionic polymerization of butadiene,” European Polymer Journal, vol. 43, no. 3, pp. 928–937, 2007. View at Publisher · View at Google Scholar
  10. H. Madra, S. B. Tantekin-Ersolmaz, and F. S. Guner, “Monitoring of oil-based polyurethane synthesis by FTIR-ATR,” Polymer Testing, vol. 28, no. 7, pp. 773–779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sahre, T. Hoffmann, D. Pospiech, K. J. Eichhorn, D. Fischer, and B. Voit, “Monitoring of the polycondensation reaction of bisphenol A and 4,4′-dichlorodiphenylsulfone towards polysulfone (PSU) by real-time ATR-FTIR spectroscopy,” European Polymer Journal, vol. 42, no. 10, pp. 2292–2301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Schoonover, R. Marx, and W. R. Nichols, “Application of multivariate curve resolution analysis to FTIR kinetics data,” Vibrational Spectroscopy, vol. 35, no. 1-2, pp. 239–245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Czarnik-Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibrational Spectroscopy, vol. 40, no. 2, pp. 235–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. de Juan and R. Tauler, “Multivariate Curve Resolution (MCR) from 2000: progress in concepts and applications,” Critical Reviews in Analytical Chemistry, vol. 36, no. 3-4, pp. 163–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Abbas, C. Rebufa, N. Dupuy, and J. Kister, “FTIR-Multivariate curve resolution monitoring of photo-Fenton degradation of phenolic aqueous solutions. Comparison with HPLC as a reference method,” Talanta, vol. 77, no. 1, pp. 200–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Garrido, M. S. Larrechi, and F. X. Rius, “Validation of the concentration profiles obtained from the near infrared/multivariate curve resolution monitoring of reactions of epoxy resins using high performance liquid chromatography as a reference method,” Analytica Chimica Acta, vol. 585, no. 2, pp. 277–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Spegazzini, I. Ruisánchez, A. Serra, A. Mantecón, and M. S. Larrechi, “A methodology to estimate concentration profiles from two-dimensional covariance spectroscopy applied to kinetic data,” Applied Spectroscopy, vol. 64, no. 2, pp. 177–186, 2010. View at Google Scholar · View at Scopus
  18. M. Blanco, M. Castillo, and R. Beneyto, “Study of reaction processes by in-line near-infrared spectroscopy in combination with multivariate curve resolution. Esterification of myristic acid with isopropanol,” Talanta, vol. 72, no. 2, pp. 519–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. V. del Río, M. P. Callao, M. S. Larrechi, L. M. de Espinosa, J. C. Ronda, and V. Cádiz, “Chemometric resolution of NIR spectra data of a model aza-Michael reaction with a combination of local rank exploratory analysis and multivariate curve resolution-alternating least squares (MCR-ALS) method,” Analytica Chimica Acta, vol. 642, no. 1-2, pp. 148–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. T. Wallenberger and N. Weston, Natural Fibers, Plastics and Composites, Kluwer Academic, Boston, Mass, USA, 2004.
  21. J. Mijović, S. Andjelić, and J. M. Kenny, “In situ real-time monitoring of epoxy/amine kinetics by remote near infrared spectroscopy,” Polymers for Advanced Technologies, vol. 7, no. 1, pp. 1–16, 1996. View at Google Scholar · View at Scopus
  22. V. del Río, N. Spegazzini, M. P. Callao, and M. S. Larrechi, “Spectroscopic and quantitative chemometric analysis of the epoxidised oil/amine system,” Journal of Near Infrared Spectroscopy, vol. 18, p. 281, 2010. View at Google Scholar
  23. L. M. de Espinosa, J. C. Ronda, M. Galià, and V. Cádiz, “A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 46, no. 20, pp. 6843–6850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. The Mathworks, MATLAB Version 7.0, Natick, Mass, USA, 2004.
  25. J. H. Jiang, Y. Liang, and Y. Ozaki, “Principles and methodologies in self-modeling curve resolution,” Chemometrics and Intelligent Laboratory Systems, vol. 71, no. 1, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Saurina, S. Hernández-Cassou, and R. Tauler, “Continuous flow titration system for the generation of multivariate spectrophotometric data in the study of acid-base equilibria,” Analytica Chimica Acta, vol. 312, no. 2, pp. 189–198, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Tauler, A. Izquierdo-Ridorsa, and E. Casassas, “Simultaneous analysis of several spectroscopic titrations with self-modelling curve resolution,” Chemometrics and Intelligent Laboratory Systems, vol. 18, no. 3, pp. 293–300, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Coates, “Interpretation of infrared spectra,” in A Practical Approach in Encyclopedia of Analytical Chemistry, R. A. Meyers, Ed., pp. 10815–10837, John Wiley & Sons, Chicester, UK, 2000. View at Google Scholar
  29. D. L. Massart, B. Vandeginste, L. Buydens, S. de Jong, P. Lewi, and J. Smeyers-Verbeke, Handbook of Chemometrics and Qualimetrics, Part A, Elsevier, Amsterdam, The Netherlands, 1997.
  30. M. Amrhein, B. Srinivasan, D. Bonvin, and M. M. Schumacher, “On the rank deficiency and rank augmentation of the spectral measurement matrix,” Chemometrics and Intelligent Laboratory Systems, vol. 33, no. 1, pp. 17–33, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Tauler, “Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution,” Journal of Chemometrics, vol. 15, no. 8, pp. 627–646, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Ghaemy, M. Barghamadi, and H. Behmadi, “Cure kinetics of epoxy resin and aromatic diamines,” Journal of Applied Polymer Science, vol. 94, no. 3, pp. 1049–1056, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization of heterocyclic monomers, Vol. I, mechanisms,” Advances in Polymer Science, vol. 37, p. 1, 1980. View at Google Scholar