Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011 (2011), Article ID 704795, 7 pages
http://dx.doi.org/10.1155/2011/704795
Research Article

Determination of Diethyl Phthalate and Polyhexamethylene Guanidine in Surrogate Alcohol from Russia

1Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straβe 3, 76187 Karlsruhe, Germany
2Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia

Received 28 January 2011; Accepted 17 March 2011

Academic Editor: D. Tsikas

Copyright © 2011 Yulia B. Monakhova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Lachenmeier, J. Rehm, and G. Gmel, “Surrogate alcohol: what do we know and where do we go?” Alcoholism: Clinical and Experimental Research, vol. 31, no. 10, pp. 1613–1624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. Leon, L. Saburova, S. Tomkins, E. Andreev et al., “Hazardous alcohol drinking and premature mortality in Russia: a population based case-control study,” The Lancet, vol. 369, no. 9578, pp. 2001–2009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. McKee, S. Süzcs, A. Sárváry, R. Ádany et al., “The composition of surrogate alcohols consumed in Russia,” Alcoholism: Clinical and Experimental Research, vol. 29, no. 10, pp. 1884–1888, 2005. View at Google Scholar
  4. E. S. Tsisanova and E. M. Salomatin, “Forensic chemical investigation of alcohol-containing liquids doped with polyhexamethylene guanidine hzdrochloride and diethylphthalate,” Sudebno-medicinskay ekspertiza, vol. 53, no. 4, pp. 33–37, 2010. View at Google Scholar
  5. Y. V. Solodun, V. A. Klevno, T. D. Lelyukh, L. S. Maslauskaite et al., “Forensic-medical evaluation of toxic hepatitis associated with surrogate alcohol poisoning,” Sudebno-medicinskay ekspertiza, vol. 54, no. 8, pp. 23–28, 2008. View at Google Scholar
  6. J. Leitz, T. Kuballa, J. Rehm, and D. W. Lachenmeier, “Chemical analysis and risk assessment of diethyl phthalate in alcoholic beverages with special regard to unrecorded alcohol,” PloS one, vol. 4, no. 12, p. e8127, 2009. View at Google Scholar · View at Scopus
  7. S. A. Savchuk, V. P. Nuzhnyi, and G. M. Kolesov, “Factors affecting the accuracy of the determination of diethyl phthalate in vodka, ethanol, and samples of illegal alcoholic products,” Journal of Analytical Chemistry, vol. 61, no. 12, pp. 1198–1203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. X. L. Cao, “Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 1, pp. 21–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. S. Chmilenko, E. A. Galimbievskay, and F. A. Chmilenko, “Formation of bromophenol red ion associates and their interaction with polyhexamethylene guanidine in water solutions,” Metodi I Objecti Chimicheskogo Analiza, vol. 5, no. 1, pp. 19–28, 2010. View at Google Scholar
  10. Y. B. Monakhova, S. A. Astakhov, A. Kraskov, and S. P. Mushtakova, “Independent components in spectroscopic analysis of complex mixtures,” Chemometrics and Intelligent Laboratory Systems, vol. 103, no. 2, pp. 108–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. Lachenmeier, W. Frank, E. Humpfer, H. Schäfer et al., “Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis,” European Food Research and Technology, vol. 220, no. 2, pp. 215–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. W. Lachenmeier and W. Kessler, “Multivariate curve resolution of spectrophotometric data for the determination of artificial food colors,” Journal of Agricultural and Food Chemistry, vol. 56, no. 14, pp. 5463–5468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. B. Monakhova, S. P. Mushtakova, S. S. Kolesnikova, and S. A. Astakhov, “Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures,” Analytical and Bioanalytical Chemistry, vol. 397, no. 3, pp. 1297–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. de Juan and R. Tauler, “Multivariate Curve Resolution (MCR) from 2000: progress in concepts and applications,” Critical Reviews in Analytical Chemistry, vol. 36, no. 3-4, pp. 163–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Hyvarinen, E. Karhunen, and E. Oja, Independent Component Analysis, Wiley, New York, NY, USA, 2001.
  16. A. Kraskov, H. Stogbauer, and P. Grassberger, “Estimating mutual information,” Physical Review E, vol. 69, no. 6, Article ID 066138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. B. Schaller, M. E. Munk, and E. Pretsch, “Spectra estimation for computer-aided structure determination,” Journal of Chemical Information and Computer Sciences, vol. 36, no. 2, pp. 239–243, 1996. View at Google Scholar · View at Scopus
  18. J. J. P. Stewart, “PM3,” in Encyclopedia of Computational Chemistry, Willey, New York, NY, USA, 1998. View at Google Scholar
  19. V. Nuzhnyi, in Moonshine Market: Issues in Unrecorded Alcohol Beverage Production and Consumption, A. Haworth and R. Simpson, Eds., p. 177, Brunner-Routledge, New York, NY, USA, 2004.
  20. P. A. Gembitskii, Y. I. Koryavov, P. M. Erusalimskii, V. E. Limanov et al., “Synthesis of poly(alkyleneguanidines) and poly(alkylenebiguanides),” Journal of Applied Chemistry of the Ussr, vol. 48, no. 8, pp. 1897–1899, 1975. View at Google Scholar
  21. Y. Pan, H. Xiao, G. Zhao, and B. He, “Antimicrobial and thermal-responsive layer-by-layer assembly based on ionic-modified guanidine polymer and PVA,” Polymer Bulletin, vol. 61, no. 5, pp. 541–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. DIN 32645, Chemische Analytik: Nachweis-, Erfassungs- und Bestimmungsgrenze, Ermittlung unter Wiederholbedingungen. Begriffe, Verfahren, Auswertung, Beuth Verlag, Berlin, Germany, 1994.
  23. D. W. Lachenmeier, E. Humpfer, F. Fang, B. Schutz et al., “NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: the example of melamine,” Journal of Agricultural and Food Chemistry, vol. 57, no. 16, pp. 7194–7199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Gil, O. Polikina, N. Koroleva, M. McKee et al., “Availability and characteristics of nonbeverage alcohols sold in 17 Russian cities in 2007,” Alcoholism: Clinical and Experimental Research, vol. 33, no. 1, pp. 79–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. D. W. Lachenmeier, F. Kanteres, and J. Rehm, “Unrecorded alcohol in Russia: is there more to it than just ethanol?” Alcoholism: Clinical and Experimental Research, vol. 33, no. 5, pp. 759–760, 2009. View at Publisher · View at Google Scholar · View at Scopus