Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011 (2011), Article ID 726462, 8 pages
http://dx.doi.org/10.1155/2011/726462
Research Article

A Comparative Electrochemical Behaviour Study and Analytical Detection of the p-Nitrophenol Using Silver Solid Amalgam, Mercury, and Silver Electrodes

1Campus de Patos de Minas, Instituto de Química, Universidade Federal de Uberlândia, Avenida Getúlio Vargas, 230 Centro, 38700-126 Patos de Minas, MG, Brazil
2Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil

Received 19 January 2011; Accepted 24 March 2011

Academic Editor: Dimitrios P. Nikolelis

Copyright © 2011 Djenaine De Souza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This work reports a comparative electrochemical behaviour study and p-nitrophenol analytical detection using silver solid amalgam, hanging dropping mercury, and silver electrodes. For this, square wave voltammetry was employed, where the analytical responses and the redox mechanisms could be compared for reduction processes of 4-nitrophenol by analysis of the voltammetric responses. The analytical performance of the electrode was evaluated and detection and quantification limits, recovery percentages, repeatability, and reproducibility for the silver solid amalgam and hanging dropping mercury electrodes presented similar values; the results presented for the silver electrode indicated worse analytical parameters than the other electrodes. The results indicate that the silver solid amalgam electrode can be considered a suitable tool and an interesting alternative for the analytical determination of 4-nitrophenol, as well as for the determination of other biological and environmentally interesting compounds that present analytical responses on mercury surfaces.