Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011 (2011), Article ID 797604, 11 pages
http://dx.doi.org/10.1155/2011/797604
Research Article

Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution

1Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
2Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, Saratov 410012, Russia

Received 11 January 2011; Revised 8 March 2011; Accepted 30 March 2011

Academic Editor: Jan Åke Jönsson

Copyright © 2011 Julien A. Jendral et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IARC, “Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 88, pp. 39–325, 2006. View at Google Scholar
  2. R. Baan, Y. Grosse, K. Straif et al., “A review of human carcinogens—part F: chemical agents and related occupations,” The Lancet Oncology, vol. 10, no. 12, pp. 1143–1144, 2009. View at Google Scholar · View at Scopus
  3. US-EPA, “Formaldehyde (CASRN 50-00-0). Integrated Risk Information System,” Document 0419, U.S. Environmental Protection Ageny, Washington, DC, USA, 1998. View at Google Scholar
  4. IPCS, “Formaldehyde. Concise international chemical assessment document 40,” Tech. Rep., World Health Organization, Geneva, Switzerland, 2002. View at Google Scholar
  5. H. P. Til, R. A. Woutersen, and V. J. Feron, “Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking-water study in rats,” Food and Chemical Toxicology, vol. 26, no. 5, pp. 447–452, 1988. View at Google Scholar · View at Scopus
  6. V. J. Feron, H. P. Til, F. De Vrijer, R. A. Woutersen, F. R. Cassee, and P. J. Van Bladeren, “Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment,” Mutation Research, vol. 259, no. 3-4, pp. 363–385, 1991. View at Google Scholar · View at Scopus
  7. P. E. Georghiou and C. K. J. Ho, “The chemistry of the chromotropic-acid method for the analysis of formaldehyde,” Canadian Journal of Chemistry, vol. 67, no. 5, pp. 871–876, 1989. View at Google Scholar
  8. H. B. Hopps, “Purpald(R): a reagent that turns aldehydes purple!,” Aldrichimica Acta, vol. 33, no. 1, pp. 28–30, 2000. View at Google Scholar · View at Scopus
  9. D. W. Lachenmeier and E. M. Sohnius, “The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey,” Food and Chemical Toxicology, vol. 46, no. 8, pp. 2903–2911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Lachenmeier, F. Kanteres, and J. Rehm, “Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism,” Addiction, vol. 104, no. 4, pp. 533–550, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. Lachenmeier, F. Kanteres, and J. Rehm, “Epidemiology-based risk assessment using the benchmark dose/margin of exposure approach: the example of ethanol and liver cirrhosis,” International Journal of Epidemiology, vol. 40, no. 1, pp. 210–218, 2011. View at Publisher · View at Google Scholar
  12. European Commission, “Commission Regulation (EC) No 2870/2000 laying down Community reference methods for the analysis of spirits drinks,” Official Journal of the European Communities, vol. L333, pp. 20–46, 2000. View at Google Scholar
  13. M. N. Lau, J. D. Ebeler, and S. E. Ebeler, “Gas chromatographic analysis of aldehydes in alcoholic beverages using a cysteamine derivatization procedure,” American Journal of Enology and Viticulture, vol. 50, no. 3, pp. 324–333, 1999. View at Google Scholar · View at Scopus
  14. H. Miyakawa, K. Fujinuma, and K. Kamata, “Determination of formaldehyde in beer,” Annual Report of Tokyo Metropolitan Institute of Public Health, vol. 58, pp. 185–188, 2007. View at Google Scholar
  15. Y. S. Park, Y. J. Lee, and K. T. Lee, “Analysis of formaldehyde and acetaldehyde in alcoholic beverage,” Journal of The Korean Society of Food Science and Nutrition, vol. 35, no. 10, pp. 1412–1419, 2006. View at Google Scholar
  16. J. Curyło and W. Wardencki, “HS-SPME-CGC-PID determination of aldehydes in rectified spirits and vodkas after derivatisation with 2,4,6-trichlorophenylhydrazine (TCPH),” Chemia Analityczna, vol. 50, no. 4, pp. 735–748, 2005. View at Google Scholar · View at Scopus
  17. P. Sowiński, W. Wardencki, and M. Partyka, “Development and evaluation of headspace gas chromatography method for the analysis of carbonyl compounds in spirits and vodkas,” Analytica Chimica Acta, vol. 539, no. 1-2, pp. 17–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. J. Wu, H. Lin, W. Fan, J. J. Dong, and H. L. Chen, “Investigation into benzene, trihalomethanes and formaldehyde in Chinese lager beers,” Journal of the Institute of Brewing, vol. 112, no. 4, pp. 291–294, 2006. View at Google Scholar · View at Scopus
  19. J. Curyło and W. Wardencki, “Application of single drop extraction (SDE) gas chromatography method for the determination of carbonyl compounds in spirits and vodkas,” Analytical Letters, vol. 39, no. 13, pp. 2629–2642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Wardencki, P. Sowiński, and J. Curyło, “Evaluation of headspace solid-phase microextraction for the analysis of volatile carbonyl compounds in spirits and alcoholic beverages,” Journal of Chromatography A, vol. 984, no. 1, pp. 89–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. E. A. de Oliveira and J. B. de Andrade, “Simultaneous determination of formaldehyde and acetaldehyde and their respective hydroxyalkylsulfonic acids by HPLC,” Química Nova, vol. 17, no. 1, pp. 13–16, 1994. View at Google Scholar
  22. J. B. de Andrade, J. N. Reis, M. V. Rebouças, H. L. C. Pinheiro et al., “Determination of formaldehyde and acetaldehyde in drinking water and alcoholic beverages by high performance liquid chromatography (HPLC),” Quimica Analitica, vol. 15, no. 2, pp. 144–147, 1996. View at Google Scholar
  23. L. C. de Azevedo, M. M. Reis, G. E. Pereira, G. O. Da Rocha, L. A. Silva, and J. B. De Andrade, “A liquid chromatographic method optimization for the assessment of low and high molar mass carbonyl compounds in wines,” Journal of Separation Science, vol. 32, no. 20, pp. 3432–3440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Pires Penteado, A. C. Sobral, and J. C. Masini, “Evaluation of monolithic columns for determination of formaldehyde and acetaldehyde in sugar cane spirits by high-performance liquid chromatography,” Analytical Letters, vol. 41, no. 9, pp. 1674–1681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Burini and R. Coli, “Determination of formaldehyde in spirits by high-performance liquid chromatography with diode-array detection after derivatization,” Analytica Chimica Acta, vol. 511, no. 1, pp. 155–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Lawrence and J. R. Iyengar, “The determination of formaldehyde in beer and soft drinks by HPLC of the 2,4-dinitrophenylhydrazone derivative,” International Journal of Environmental Analytical Chemistry, vol. 15, no. 1, pp. 47–52, 1983. View at Google Scholar · View at Scopus
  27. R. J. Elias, V. F. Laurie, S. E. Ebeler, J. W. Wong, and A. L. Waterhouse, “Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection,” Analytica Chimica Acta, vol. 626, no. 1, pp. 104–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Rodríguez, K. Wrobel, and K. Wrobel, “Determination of aldehydes in tequila by high-performance liquid chromatography with 2,4-dinitrophenylhydrazine derivatization,” European Food Research and Technology, vol. 221, no. 6, pp. 798–802, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. O. M. Sampaio, R. V. Reche, and D. W. Franco, “Chemical profile of rums as a function of their origin. The use of chemometric techniques for their identification,” Journal of Agricultural and Food Chemistry, vol. 56, no. 5, pp. 1661–1668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. F. Nascimento, J. C. Marques, B. S. Lima Neto, D. De Keukeleire, and D. W. Franco, “Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages,” Journal of Chromatography A, vol. 782, no. 1, pp. 13–23, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Q. Zhao and Z. Q. Zhang, “Microwave-assisted on-line derivatization for sensitive flow injection fluorometric determination of formaldehyde in some foods,” Talanta, vol. 80, no. 1, pp. 242–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Q. Zhao and Z. Q. Zhang, “Rapid and sensitive determination of formaldehyde in some beverages and foods by flow-injection fluorimetric analysis,” International Journal of Food Science and Technology, vol. 44, no. 1, pp. 216–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. S. de Oliveira, E. T. Sousa, and J. B. de Andrade, “A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages,” Talanta, vol. 73, no. 3, pp. 561–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. AOAC, AOAC Official Methods of Analysis, AOAC, Arlington, Va, USA, 1995.
  35. E. Eegriwe, “Reaktionen und Reagenzien zum Nachweis organischer Verbindungen IV. Formaldehyd,” Fresenius' Journal of Analytical Chemistry, vol. 110, no. 1, pp. 22–25, 1937. View at Google Scholar
  36. H. Brandl, “4-Amino-3-hydrazino-5-mercapto-4H-1,2,4-triazol (Purpald®)—ein neues sensitives Reagenz auf Aldehyde,” Praxis der Naturwissenschaften-Chemie, vol. 40, no. 7, pp. 25–29, 1991. View at Google Scholar
  37. R. G. Dickinson and N. W. Jacobsen, “A new sensitive and specific test for the detection of aldehydes: formation of 6-mercapto-3-substituted-s-triazolo[4,3-b]-s-tetrazines,” Journal of the Chemical Society D: Chemical Communications, no. 24, pp. 1719–1720, 1970. View at Publisher · View at Google Scholar · View at Scopus
  38. N. W. Jacobsen and R. G. Dickinson, “Spectrometric assay of aldehydes as 6-mercapto-3-substituted-s-triazolo(4,3-b)-s-tetrazines,” Analytical Chemistry, vol. 46, no. 2, pp. 298–299, 1974. View at Google Scholar · View at Scopus
  39. J. Rehm, F. Kanteres, and D. W. Lachenmeier, “Unrecorded consumption, quality of alcohol and health consequences,” Drug and Alcohol Review, vol. 29, no. 4, pp. 426–436, 2010. View at Publisher · View at Google Scholar
  40. D. W. Lachenmeier, R. Godelmann, M. Steiner, B. Ansay, J. Weigel, and G. Krieg, “Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor,” Chemistry Central Journal, vol. 4, no. 1, p. 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Lachenmeier, O. Sviridov, W. Frank, and C. Athanasakis, “Rapid determination of the alcohol content in liqueur emulsions and other spirits using steam distillation and densitometry,” Deutsche Lebensmittel-Rundschau, vol. 99, no. 11, pp. 439–444, 2003. View at Google Scholar · View at Scopus
  42. D. W. Lachenmeier, P. A. Burri, T. Fauser, W. Frank, and S. G. Walch, “Rapid determination of alcoholic strength of egg liqueur using steam distillation and oscillation-type densimetry with peristaltic pumping,” Analytica Chimica Acta, vol. 537, no. 1-2, pp. 377–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. D. W. Lachenmeier, S. G. Walch, and W. Kessler, “Using experimental design to optimise precision of steam distillation for determining alcoholic strength in spirits,” European Food Research and Technology, vol. 223, no. 2, pp. 261–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. D. W. Lachenmeier and W. Kessler, “Multivariate curve resolution of spectrophotometric data for the determination of artificial food colors,” Journal of Agricultural and Food Chemistry, vol. 56, no. 14, pp. 5463–5468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Kandelbauer, W. Kessler, and R. W. Kessler, “Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation,” Analytical and Bioanalytical Chemistry, vol. 390, no. 5, pp. 1303–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. de Juan and R. Tauler, “Multivariate Curve Resolution (MCR) from 2000: progress in concepts and applications,” Critical Reviews in Analytical Chemistry, vol. 36, no. 3-4, pp. 163–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. B. Monakhova, S. A. Astakhov, A. Kraskov, and S. P. Mushtakova, “Independent components in spectroscopic analysis of complex mixtures,” Chemometrics and Intelligent Laboratory Systems, vol. 103, pp. 108–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Kessler and R. W. Kessler, “Multivariate curve resolution—integration of knowledge in chemometric modelsMultivariate curve resolution—integration von wissen in chemometrische modelle,” Chemie-Ingenieur-Technik, vol. 82, no. 4, pp. 441–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Tauler, A. Smilde, and B. Kowalski, “Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution,” Journal of Chemometrics, vol. 9, no. 1, pp. 31–58, 1995. View at Google Scholar
  50. R. Tauler, “Multivariate curve resolution applied to second order data,” Chemometrics and Intelligent Laboratory Systems, vol. 30, no. 1, pp. 133–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Kessler and R. W. Kessler, “Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions,” Analytical and Bioanalytical Chemistry, vol. 384, no. 5, pp. 1087–1095, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. U. B. Monakhova, S. P. Mushtakova, S. S. Kolesnikova, and S. A. Astakhov, “Chemometrics-assisted spectrophotometric method for simultaneous determination of vitamins in complex mixtures,” Analytical and Bioanalytical Chemistry, vol. 397, no. 3, pp. 1297–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Winning, F. H. Larsen, R. Bro, and S. B. Engelsen, “Quantitative analysis of NMR spectra with chemometrics,” Journal of Magnetic Resonance, vol. 190, no. 1, pp. 26–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. P. D. A. Pudney, T. M. Hancewicz, and D. G. Cunningham, “The use of confocal Raman spectroscopy to characterise the microstructure of complex biomaterials: foods,” Spectroscopy, vol. 16, no. 3-4, pp. 217–225, 2002. View at Google Scholar · View at Scopus
  55. A. Hyvärinen, E. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, NY, USA, 2001.
  56. A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing, Learning Algorithms and Applications, John Wiley & Sons, New York, NY, USA, 2002.
  57. S. A. Astakhov, H. Stögbauer, A. Kraskov, and P. Grassberger, “Monte Carlo algorithm for least dependent non-negative mixture decomposition,” Analytical Chemistry, vol. 78, no. 5, pp. 1620–1627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Stögbauer, A. Kraskov, S. A. Astakhov, and P. Grassberger, “Least-dependent-component analysis based on mutual information,” Physical Review E, vol. 70, no. 6, Article ID 066123, pp. 1–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Windig and J. Guilment, “Interactive self-modeling mixture analysis,” Analytical Chemistry, vol. 63, no. 14, pp. 1425–1432, 1991. View at Google Scholar · View at Scopus
  60. J. J. P. Stewart, Encyclopedia of Computational Chemistry, John Wiley & Sons, New York, NY, USA, 1998.
  61. E. Pretsch, A. Fürst, M. Badertscher, R. Bürgin, and M. E. Munk, “C13Shift: a computer program for the prediction of C NMR spectra based on an open set of additivity rules,” Journal of Chemical Information and Computer Science, vol. 32, pp. 291–295, 1992. View at Google Scholar · View at Scopus
  62. R. Bürgin Schaller, M. E. Munk, and E. Pretsch, “Spectra estimation for computer-aided structure determination,” Journal of Chemical Information and Computer Sciences, vol. 36, no. 2, pp. 239–243, 1996. View at Google Scholar · View at Scopus
  63. Y.-L. Li, J. Liu, and W.-S. Guan, “Determination of trace formaldehyde in alcoholic beverages by chromotropic acid spectrophotometry,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '09), p. 1, IEEE Xplore, Beijing, China, 2009.
  64. K. Steiner and U. Länzlinger, “Formaldehyde beer turbidity,” Brauerei-Rundschau, vol. 93, no. 3, pp. 37–38, 1982. View at Google Scholar
  65. Y. Liu, “Determination method for formaldehyde in beer of national standards,” Chinese Journal of Public Health Engineering, vol. 8, no. 6, pp. 352–355, 2009. View at Google Scholar
  66. Merck, “Spectroquant Formaldehyde Test 1.14678.0001 Instructions for use,” Merck, Darmstadt, Germany, 2010.
  67. K. Steiner, F. Schur, and H. Pfenninger, “Experiments to detect formaldehyde in beer,” Brauwissenschaft, vol. 22, no. 3, pp. 87–90, 1969. View at Google Scholar
  68. S. Donhauser, K. Glas, and G. Walla, “Detection of formaldehyde in beer,” Monatsschrift für Brauwissenschaft, vol. 39, no. 10, pp. 364–368, 1986. View at Google Scholar
  69. T. Kleinert and E. Srepel, “Eine kolorimetrische Bestimmung kleiner Formaldehydmengen mittels Chromotropsäure,” Mikrochemie Vereinigt mit Mikrochimica Acta, vol. 33, no. 4, pp. 328–332, 1948. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Krüger and H. J. Holländer, “Detection of formaldehyde in beer,” Monatsschrift für Brauerei, vol. 21, no. 6, pp. 155–165, 1968. View at Google Scholar · View at Scopus
  71. E. L. R. Krug, “Interference of nitrate in the determination of formaldehyde by the chromotropic acid method,” Analytical Chemistry, vol. 49, no. 12, pp. 1865–1867, 1977. View at Google Scholar · View at Scopus
  72. D. A. MacFadyen, “Estimation of formaldehyde in biological mixtures,” Journal of Biological Chemistry, vol. 158, no. 1, pp. 107–133, 1945. View at Google Scholar
  73. J. Knabe, “On the effect of foreign substances on the photometric determination of formaldehyde with chromotropic acid,” Archiv der Pharmazie, vol. 297, pp. 312–316, 1964. View at Google Scholar
  74. F. Gasparini, P. L. Weinert, L. S. Lima, L. Pezza, and H. R. Pezza, “A simple and green analytical method for the determination of formaldehyde,” Journal of the Brazilian Chemical Society, vol. 19, no. 8, pp. 1531–1537, 2008. View at Google Scholar · View at Scopus
  75. I. Ahonen, E. Priha, and M. L. Aijala, “Specificity of analytical methods used to determine the concentration of formaldehyde in workroom air,” Chemosphere, vol. 13, no. 4, pp. 521–525, 1984. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Fagnani, C. B. Melios, L. Pezza, and H. R. Pezza, “Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid,” Talanta, vol. 60, no. 1, pp. 171–176, 2003. View at Publisher · View at Google Scholar · View at Scopus