Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analytical Chemistry
Volume 2011 (2011), Article ID 832414, 6 pages
http://dx.doi.org/10.1155/2011/832414
Research Article

Quantification of Lansoprazole in Oral Suspension by Ultra-High-Performance Liquid Chromatography Hybrid Ion-Trap Time-of-Flight Mass Spectrometry

1Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy East Tennessee State University, Box 70594, Johnson City, TN 37614, USA
2Department of Pharmacy Practice, Bill Gatton College of Pharmacy East Tennessee State University, Box 70594, Johnson City, TN 37614, USA

Received 11 January 2011; Revised 7 April 2011; Accepted 13 April 2011

Academic Editor: Hian Kee Lee

Copyright © 2011 Stacy D. Brown et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Lugo, J. Cash, R. Trimby, R. Ward, and S. Spielberg, “A survey of children’s hospitals on the use of extemporaneous liquid formulations in the inpatient setting,” The Journal of Pediatric Pharmacology and Therapeutics, vol. 14, p. 156, 2009. View at Google Scholar
  2. Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 21st edition, 2006.
  3. A. Olabisi, J. Chen, and M. Garala, “Evaluation of different lansoprazole formulations for nasogastric or orogastric administration,” Hospital Pharmacy, vol. 42, no. 6, pp. 537–542, 2007. View at Google Scholar · View at Scopus
  4. J. L. DiGiacinto, K. M. Olsen, K. L. Bergman, and E. B. Hoie, “Stability of suspension formulations of lansoprazole and omeprazole stored in amber-colored plastic oral syringes,” Annals of Pharmacotherapy, vol. 34, no. 5, pp. 600–605, 2000. View at Google Scholar · View at Scopus
  5. J. O. Phillips, M. Metzler, and K. M. Olsen, “The stability of simplified lansoprazole suspension (SLS),” Gastroenterology, vol. 116, p. 122, 1999. View at Google Scholar
  6. L. Trissel, Trissel’s Stability of Compounded Formulations, American Pharmacists Association, Washington, DC, USA, 3rd edition, 2005.
  7. T. Hishinuma, K. Suzuki, H. Yamaguchi et al., “Simple quantification of lansoprazole and rabeprazole concentrations in human serum by liquid chromatography/tandem mass spectrometry,” Journal of Chromatography B, vol. 870, no. 1, pp. 38–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. Oliveira, R. E. Barrientos-Astigarraga, E. Abib, G. D. Mendes, D. R. Da Silva, and G. De Nucci, “Lansoprazole quantification in human plasma by liquid chromatography-electrospray tandem mass spectrometry,” Journal of Chromatography B, vol. 783, no. 2, pp. 453–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. G. L. Wu, H. L. Zhou, J. Z. Shentu, Q. J. He, and B. O. Yang, “Determination of lansoprazole in human plasma by rapid resolution liquid chromatography-electrospray tandem mass spectrometry: application to a bioequivalence study on Chinese volunteers,” Journal of Pharmaceutical and Biomedical Analysis, vol. 48, no. 5, pp. 1485–1489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. M. Wahbi, O. Abdel-Razak, A. A. Gazy, H. Mahgoub, and M. S. Moneeb, “Spectrophotometric determination of omeprazole, lansoprazole and pantoprazole in pharmaceutical formulations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 4, pp. 1133–1142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Miura, H. Tada, and T. Suzuki, “Simultaneous determination of lansoprazole enantiomers and their metabolites in plasma by liquid chromatography with solid-phase extraction,” Journal of Chromatography B, vol. 804, no. 2, pp. 389–395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Özaltín, “Determination of Lansoprazole in pharmaceutical dosage forms by two different spectroscopic methods,” Journal of Pharmaceutical and Biomedical Analysis, vol. 20, no. 3, pp. 599–606, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. A. El-Sherif, A. O. Mohamed, M. G. El-Bardeicy, and M. F. El-Tarras, “Stability-indicating methods for the determination of lansoprazole,” Spectroscopy Letters, vol. 38, no. 1, pp. 77–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Wu, J. Ge, P.-Y. Yang, J. Wang, M. Uttamchandani, and S. Q. Yao, “A peptide aldehyde microarray for high-throughput profiling of cellular events,” Journal of the American Chemical Society, vol. 133, no. 6, pp. 1946–1954, 2011. View at Publisher · View at Google Scholar
  15. G. Theodoridis, H. G. Gika, and I. D. Wilson, “LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics,” Trends in Analytical Chemistry, vol. 27, no. 3, pp. 251–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Bisogno, F. Piscitelli, and V. Di Marzo, “Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: endocannabinoidomics,” European Journal of Lipid Science and Technology, vol. 111, no. 1, pp. 53–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Liang, H. Hao, A. N. Kang et al., “Qualitative and quantitative determination of complicated herbal components by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a relative exposure approach to herbal pharmacokinetics independent of standards,” Journal of Chromatography A, vol. 1217, no. 30, pp. 4971–4979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. T. Viswanathan, S. Bansal, B. Booth et al., “Workshop/conference report—quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays,” AAPS Journal, vol. 9, no. 1, article 4, pp. E30–E42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ende and G. Spiteller, “Contaminants in mass spectrometry,” Mass Spectrometry Reviews, vol. 1, pp. 29–62, 1982. View at Google Scholar
  20. L. Nováková, L. Matysová, and P. Solich, “Advantages of application of UPLC in pharmaceutical analysis,” Talanta, vol. 68, no. 3, pp. 908–918, 2006. View at Publisher · View at Google Scholar · View at Scopus