Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2010 (2010), Article ID 140539, 17 pages
http://dx.doi.org/10.4061/2010/140539
Research Article

Alzheimer's Disease: A Pathogenetic Autoimmune Disorder Caused by Herpes Simplex in a Gene-Dependent Manner

Polygenic Pathways, Flat 4, 20 Upper Maze Hill, Saint Leonard's on Sea, East Sussex TN38 OLG, UK

Received 23 July 2010; Revised 27 September 2010; Accepted 22 October 2010

Academic Editor: Paula Moreira

Copyright © 2010 C. J. Carter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. F. Itzhaki, C. B. Dobson, W.-R. Lin, and M. A. Wozniak, “Association of HSV1 and apolipoprotein E-ε4 in Alzheimer's disease,” Journal of NeuroVirology, vol. 7, no. 6, pp. 570–571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. F. Itzhaki, C. B. Dobson, M. A. Wozniak et al., “Herpes simplex virus type 1 and Alzheimer's disease,” Annals of Neurology, vol. 55, no. 2, pp. 299–301, 2004. View at Google Scholar · View at Scopus
  3. R. F. Itzhaki and M. A. Wozniak, “Alzheimer's disease-like changes in herpes simplex virus type 1 infected cells: the case for antiviral therapy,” Rejuvenation Research, vol. 11, no. 2, pp. 319–320, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. A. Wozniak, R. F. Itzhaki, S. J. Shipley, and C. B. Dobson, “Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation,” Neuroscience Letters, vol. 429, no. 2-3, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. A. Wozniak, A. L. Frost, and R. F. Itzhaki, “Alzheimer's disease-specific tau phosphorylation is induced by herpes simplex virus type 1,” Journal of Alzheimer's Disease, vol. 16, no. 2, pp. 341–350, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. A. G. Armien, S. Hu, M. R. Little et al., “Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis,” Brain Pathology, vol. 20, no. 4, pp. 738–750, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. L. Letenneur, K. Pérès, H. Fleury et al., “Seropositivity to herpes simplex virus antibodies and risk of Alzheimer's disease: a population-based cohort study,” PLoS ONE, vol. 3, no. 11, Article ID e3637, 2008. View at Publisher · View at Google Scholar · View at PubMed
  8. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Larsen, O. Lund, and M. Nielsen, “Improved method for predicting linear B-cell epitopes,” Immunome Research, vol. 2, article 2, 2006. View at Google Scholar
  10. M. Nielsen, C. Lundegaard, O. Lund, and C. Keşmir, “The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage,” Immunogenetics, vol. 57, no. 1-2, pp. 33–41, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. J. Carter, “Herpes simplex: host viral protein interactions,” WikiGenes. In press.
  12. H. P. Huemer, Y. Wang, P. Garred, V. Koistinen, and S. Oppermann, “Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein,” Immunology, vol. 79, no. 4, pp. 639–647, 1993. View at Google Scholar
  13. R. Tal-Singer, C. Seidel-Dugan, L. Fries et al., “Herpes simplex virus glycoprotein C is a receptor for complement component iC3b,” Journal of Infectious Diseases, vol. 164, no. 4, pp. 750–753, 1991. View at Google Scholar
  14. C. J. Carter, “Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis,” Neurochemistry International, vol. 50, no. 1, pp. 12–38, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. S. Jaeger and C. U. Pietrzik, “Functional role of lipoprotein receptors in Alzheimer's disease,” Current Alzheimer Research, vol. 5, no. 1, pp. 15–25, 2008. View at Publisher · View at Google Scholar
  16. I. J. Martins, T. Berger, M. J. Sharman, G. Verdile, S. J. Fuller, and R. N. Martins, “Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease,” Journal of Neurochemistry, vol. 111, no. 6, pp. 1275–1308, 2009. View at Publisher · View at Google Scholar
  17. A. Papassotiropoulos, M. A. Wollmer, M. Tsolaki et al., “A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 66, no. 7, pp. 940–947, 2005. View at Google Scholar
  18. G. Campadelli-Fiume, P. Mirandola, and L. Menotti, “Human herpesvirus 6: an emerging pathogen,” Emerging Infectious Diseases, vol. 5, no. 3, pp. 353–366, 1999. View at Google Scholar
  19. C. J. Hammond, L. R. Hallock, R. J. Howanski, D. M. Appelt, C. S. Little, and B. J. Balin, “Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain,” BMC Neuroscience, vol. 11, article 121, 2010. View at Publisher · View at Google Scholar · View at PubMed
  20. P. S. Stein, M. Desrosiers, S. J. Donegan, J. F. Yepes, and R. J. Kryscio, “Tooth loss, dementia and neuropathology in the Nun Study,” Journal of the American Dental Association, vol. 138, no. 10, pp. 1314–1322, 2007. View at Google Scholar
  21. J. Miklossy, K. Khalili, L. Gern et al., “Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease,” Journal of Alzheimer's Disease, vol. 6, no. 6, pp. 639–649, 2004. View at Google Scholar
  22. W. R. Lin, M. A. Wozniak, R. J. Cooper, J. K. Wilcock, and R. F. Itzhaki, “Herpesviruses in brain and Alzheimer's disease,” Journal of Pathology, vol. 197, no. 3, pp. 395–402, 2002. View at Publisher · View at Google Scholar · View at PubMed
  23. T. A. Ala, R. C. Doss, and C. J. Sullivan, “Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 6, no. 5, pp. 503–508, 2004. View at Google Scholar
  24. M. Hoffmann, J. Muniz, E. Carroll, and J. De Villasante, “Cryptococcal meningitis misdiagnosed as alzheimer's disease: complete neurological and cognitive recovery with treatment,” Journal of Alzheimer's Disease, vol. 16, no. 3, pp. 517–520, 2009. View at Publisher · View at Google Scholar · View at PubMed
  25. J. Kountouras, M. Boziki, E. Gavalas et al., “Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer's disease,” Journal of Neurology, vol. 256, no. 5, pp. 758–767, 2009. View at Publisher · View at Google Scholar · View at PubMed
  26. C. J Carter, “Proteins of the XMRV retrovirus implicated in chronic fatigue syndrome and prostate cancer are homologous to human proteins relevant to both diseases,” Nature Precedings. In press. View at Publisher · View at Google Scholar
  27. C. J. Carter, “Extensive Viral mimicry of human proteins in AIDS, autoimmune disorders, late-onset and familial Alzheimer;s disease and other genetic diseases,” Nature Precedings. In press.
  28. C. Schwab, H. Akiyama, E. G. McGeer, and P. L. McGeer, “Extracellular neurofibrillary tangles are immunopositive for the 40 carboxy-terminal sequence of β-amyloid protein,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 12, pp. 1131–1137, 1998. View at Google Scholar
  29. J. B. S. Haldane, “The origin of life,” Rationalist Annual, vol. 148, pp. 3–10, 1988. View at Google Scholar
  30. F. D'Herelle, The Bacteriophage; Its Role in Immunity, Masson et Cie, Paris, France, 1922.
  31. K. Khodosevich, Y. Lebedev, and E. Sverdlov, “Endogenous retroviruses and human evolution,” Comparative and Functional Genomics, vol. 3, no. 6, pp. 494–498, 2002. View at Publisher · View at Google Scholar · View at PubMed
  32. C. J. Carter, “Familial and late-onset Alzheimer's disease: autoimmune disorders triggered by viral, microbial and allergen mimics of beta-amyloid and APP mutants ?” Nature Precedings. In press.
  33. C. J. Carter, “The human genome is composed of viral DNA: Viral homologues of the protein products cause Alzheimer's disease and others via autoimmune mechanisms,” Nature Precedings. In press.
  34. G. R. Seabrook and T. W. Rosahl, “Transgenic animals relevant to Alzheimer's disease,” Neuropharmacology, vol. 38, no. 1, pp. 1–17, 1999. View at Publisher · View at Google Scholar
  35. Y. Senechal, P. H. Kelly, J. F. Cryan, F. Natt, and K. K. Dev, “Amyloid precursor protein knockdown by siRNA impairs spontaneous alternation in adult mice,” Journal of Neurochemistry, vol. 102, no. 6, pp. 1928–1940, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. T. L. Spires and B. T. Hyman, “Transgenic models of Alzheimer's disease: learning from animals,” NeuroRx, vol. 2, no. 3, pp. 423–437, 2005. View at Publisher · View at Google Scholar
  37. D.-L. Zhang, Y.-Q. Chen, X. Jiang, T.-T. Ji, and B. Mei, “Oxidative damage increased in presenilin1/presenilin2 conditional double knockout mice,” Neuroscience Bulletin, vol. 25, no. 3, pp. 131–137, 2009. View at Publisher · View at Google Scholar
  38. M. Hiltunen, T. Van Groen, and J. Jolkkonen, “Functional roles of amyloid-β protein precursor and amyloid-β peptides: evidence from experimental studies,” Journal of Alzheimer's Disease, vol. 18, no. 2, pp. 401–412, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. D. Langui, F. Lachapelle, and C. Duyckaerts, “Animal models of neurodegenerative diseases,” Medecine/Sciences, vol. 23, no. 2, pp. 180–186, 2007. View at Google Scholar
  40. P. Eikelenboom, E. Van Exel, J. J.M. Hoozemans, R. Veerhuis, A. J.M. Rozemuller, and W. A. Van Gool, “Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer's disease,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 38–41, 2010. View at Publisher · View at Google Scholar · View at PubMed
  41. R. Veerhuis, I. Janssen, C. E. Hack, and P. Eikelenboom, “Early complement components in Alzheimer's disease brains,” Acta Neuropathologica, vol. 91, no. 1, pp. 53–60, 1996. View at Publisher · View at Google Scholar
  42. R. Veerhuis, I. Janssen, C. J. A. De Groot, F. L. Van Muiswinkel, C. E. Hack, and P. Eikelenboom, “Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor,” Experimental Neurology, vol. 160, no. 1, pp. 289–299, 1999. View at Publisher · View at Google Scholar · View at PubMed
  43. M. R. D'Andrea, “Evidence linking neuronal cell death to autoimmunity in Alzheimer's disease,” Brain Research, vol. 982, no. 1, pp. 19–30, 2003. View at Publisher · View at Google Scholar
  44. R. Veerhuis, P. Van der Valk, I. Janssen, S. S. Zhan, W. E. Van Nostrand, and P. Eikelenboom, “Complement activation in amyloid plaques in Alzheimer's disease brains does not proceed further than C3,” Virchows Archiv, vol. 426, no. 6, pp. 603–610, 1995. View at Google Scholar
  45. P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Activation of the classical complement pathway in brain tissue of Alzheimer patients,” Neuroscience Letters, vol. 107, no. 1–3, pp. 341–346, 1989. View at Publisher · View at Google Scholar
  46. S. Itagaki, H. Akiyama, H. Saito, and P. L. McGeer, “Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease,” Brain Research, vol. 645, no. 1-2, pp. 78–84, 1994. View at Google Scholar · View at Scopus
  47. H. Zanjani, C. E. Finch, C. Kemper et al., “Complement activation in very early Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 19, no. 2, pp. 55–66, 2005. View at Publisher · View at Google Scholar
  48. H. Rosenmann, N. Grigoriadis, D. Karussis et al., “Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein,” Archives of Neurology, vol. 63, no. 10, pp. 1459–1467, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. M. A. C. Morelli, M. DeBiasi, A. DeStradis, and A. M. Tamburro, “An aggregating elastin-like pentapeptide,” Journal of Biomolecular Structure and Dynamics, vol. 11, no. 1, pp. 181–190, 1993. View at Google Scholar
  50. D. H. Cribbs, B. Y. Azizeh, C. W. Cotman, and F. M. LaFerla, “Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer's Aβ peptide,” Biochemistry, vol. 39, no. 20, pp. 5988–5994, 2000. View at Publisher · View at Google Scholar
  51. D. Schenk, R. Barbour, W. Dunn et al., “Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse,” Nature, vol. 400, no. 6740, pp. 173–177, 1999. View at Publisher · View at Google Scholar · View at PubMed
  52. S. Röskam, F. Neff, R. Schwarting, M. Bacher, and R. Dodel, “APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks,” Neuroscience and Biobehavioral Reviews, vol. 34, pp. 487–499, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. A. Nath, E. Hall, M. Tuzova et al., “Autoantibodies to amyloid β-peptide (Aβ) are increased in Alzheimer's disease patients and Aβ antibodies can enhance Aβ neurotoxicity: implications for disease pathogenesis and vaccine development,” NeuroMolecular Medicine, vol. 3, no. 1, pp. 29–39, 2003. View at Publisher · View at Google Scholar
  54. P. Das, S. Chapoval, V. Howard, C. S. David, and T. E. Golde, “Immune responses against Aβ1-42 in HLA class II transgenic mice: implications for Aβ1-42 immune-mediated therapies,” Neurobiology of Aging, vol. 24, no. 7, pp. 969–976, 2003. View at Publisher · View at Google Scholar
  55. I. Ferrer, M. Boada Rovira, M. L. Sánchez Guerra, M. J. Rey, and F. Costa-Jussá, “Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease,” Brain Pathology, vol. 14, no. 1, pp. 11–20, 2004. View at Google Scholar
  56. S. Paul, S. Planque, and Y. Nishiyama, “Immunological origin and functional properties of catalytic autoantibodies to amyloid β peptide,” Journal of Clinical Immunology, vol. 30, supplement 1, pp. S43–S49, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. H. Taguchi, S. Planque, G. Sapparapu et al., “Exceptional amyloid β peptide hydrolyzing activity of nonphysiological immunoglobulin variable domain scaffolds,” Journal of Biological Chemistry, vol. 283, no. 52, pp. 36724–36733, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. J. S. Burgos, C. Ramirez, I. Sastre, and F. Valdivieso, “Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA,” Journal of Virology, vol. 80, no. 11, pp. 5383–5387, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. C. J. Carter, “Interactions between the products of the Herpes simplex genome and Alzheimer's disease susceptibility genes: relevance to pathological-signalling cascades,” Neurochemistry International, vol. 52, no. 6, pp. 920–934, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. K. Honjo, R. van Reekum, and N. P. L. G. Verhoeff, “Alzheimer's disease and infection: do infectious agents contribute to progression of Alzheimer's disease?” Alzheimer's and Dementia, vol. 5, no. 4, pp. 348–360, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. R. Itzhaki, “Herpes simplex virus type 1, apolipoprotein E and alzheimer's disease,” Herpes, vol. 11, supplement 2, pp. 77A–82A, 2004. View at Google Scholar
  62. R. F. Itzhaki, W.-R. Lin, D. Shang, G. K. Wilcock, B. Faragher, and G. A. Jamieson, “Herpes simplex virus type 1 in brain and risk of Alzheimer's disease,” Lancet, vol. 349, no. 9047, pp. 241–244, 1997. View at Publisher · View at Google Scholar
  63. R. F. Itzhaki, M. A. Wozniak, D. M. Appelt, and B. J. Balin, “Infiltration of the brain by pathogens causes Alzheimer's disease,” Neurobiology of Aging, vol. 25, no. 5, pp. 619–627, 2004. View at Publisher · View at Google Scholar · View at PubMed
  64. I. Kuhlmann, A. M. Minihane, P. Huebbe, A. Nebel, and G. Rimbach, “Apolipoprotein e genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review,” Lipids in Health and Disease, vol. 9, article 8, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. W.-R. Lin, D. Shang, and R. F. Itzhaki, “Neurotropic viruses and Alzheimer disease: interaction of herpes simplex type I virus and apolipoprotein E in the etiology of the disease,” Molecular and Chemical Neuropathology, vol. 28, no. 1–3, pp. 135–141, 1996. View at Google Scholar
  66. R. B. Pyles, “The association of herpes simplex virus and Alzheimer's disease: a potential synthesis of genetic and environmental factors,” Herpes, vol. 8, no. 3, pp. 64–68, 2001. View at Google Scholar
  67. M. A. Wozniak, S. J. Shipley, M. Combrinck, G. K. Wilcock, and R. F. Itzhaki, “Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients,” Journal of Medical Virology, vol. 75, no. 2, pp. 300–306, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. R. F. Itzhaki and M. A. Wozniak, “Herpes simplex virus type 1 in Alzheimer's disease: the enemy within,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 393–405, 2008. View at Google Scholar
  69. I. Mori, Y. Kimura, H. Naiki et al., “Reactivation of HSV-1 in the brain of patients with familial Alzheimer's disease,” Journal of Medical Virology, vol. 73, no. 4, pp. 605–611, 2004. View at Publisher · View at Google Scholar · View at PubMed
  70. Á. Zambrano, L. Solis, N. Salvadores, M. Cortés, R. Lerchundi, and C. Otth, “Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1,” Journal of Alzheimer's Disease, vol. 14, no. 3, pp. 259–269, 2008. View at Google Scholar
  71. C. M. Roe, M. I. Behrens, C. Xiong, J. P. Miller, and J. C. Morris, “Alzheimer disease and cancer,” Neurology, vol. 64, no. 5, pp. 895–898, 2005. View at Google Scholar
  72. C. M. Roe, A. L. Fitzpatrick, C. Xiong et al., “Cancer linked to Alzheimer disease but not vascular dementia,” Neurology, vol. 74, no. 2, pp. 106–112, 2010. View at Publisher · View at Google Scholar · View at PubMed
  73. S. M. Garland and J. S. Smith, “Human papillomavirus vaccines: current status and future prospects,” Drugs, vol. 70, no. 9, pp. 1079–1098, 2010. View at Publisher · View at Google Scholar · View at PubMed
  74. S. Wagner, R. W.C. Janzen, C. Mohs, S. Pohlmann, R. Klingel, and P. W. Grützmacher, “Long-term treatment of refractory myasthenia gravis with immunoadsorption Langzeitbehandlung der therapierefraktären myasthenia gravis mittels immunadsorption,” Deutsche Medizinische Wochenschrift, vol. 133, no. 46, pp. 2377–2382, 2008. View at Publisher · View at Google Scholar · View at PubMed