Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2011, Article ID 479249, 12 pages
http://dx.doi.org/10.4061/2011/479249
Review Article

Deconstructing GSK-3: The Fine Regulation of Its Activity

1NOSCIRA S.A., Tres Cantos, 28760 Madrid, Spain
2Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM-CIBERNED Nicolás Cabrera 1, 28049 Madrid, Spain

Received 21 February 2011; Accepted 28 February 2011

Academic Editor: Peter Crouch

Copyright © 2011 Miguel Medina and Francisco Wandosell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. B. Rylatt, A. Aitken, T. Bilham, G. D. Condon, N. Embi, and P. Cohen, “Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase,” European Journal of Biochemistry, vol. 107, no. 2, pp. 529–537, 1980. View at Google Scholar · View at Scopus
  2. D. M. Ferkey and D. Kimelman, “Glycogen synthase kinase-3β mutagenesis identifies a common binding domain for GBP and axin,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 16147–16152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Alessi, F. B. Caudwell, M. Andjelkovic, B. A. Hemmings, and P. Cohen, “Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase,” FEBS Letters, vol. 399, no. 3, pp. 333–338, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. D. P. Hanger, K. Hughes, J. R. Woodgett, J. P. Brion, and B. H. Anderton, “Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase,” Neuroscience Letters, vol. 147, no. 1, pp. 58–62, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Cohen, “The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction,” Philosophical Transactions of the Royal Society B, vol. 354, no. 1382, pp. 485–495, 1999. View at Google Scholar · View at Scopus
  6. M. J. Hart, R. De Los Santos, I. N. Albert, B. Rubinfeld, and P. Polakis, “Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β,” Current Biology, vol. 8, no. 10, pp. 573–581, 1998. View at Google Scholar · View at Scopus
  7. J. J. Garrido, D. Simón, O. Varea, and F. Wandosell, “GSK3 alpha and GSK3 beta are necessary for axon formation,” FEBS Letters, vol. 581, no. 8, pp. 1579–1586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. R. Lucas and P. C. Salinas, “WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons,” Developmental Biology, vol. 192, no. 1, pp. 31–44, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Pap and G. M. Cooper, “Role of glycogen synthase kinase-3 in the phosphatidylinositol 3- kinase/Akt cell survival pathway,” Journal of Biological Chemistry, vol. 273, no. 32, pp. 19929–19932, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Lucas, F. Hernández, P. Gómez-Ramos, M. A. Morán, R. Hen, and J. Avila, “Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice,” EMBO Journal, vol. 20, no. 1-2, pp. 27–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ishiguro, A. Shiratsuchi, S. Sato et al., “Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments,” FEBS Letters, vol. 325, no. 3, pp. 167–172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Lovestone, C. H. Reynolds, D. Latimer et al., “Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells,” Current Biology, vol. 4, no. 12, pp. 1077–1086, 1994. View at Google Scholar · View at Scopus
  13. M. Pérez, A. I. Rojo, F. Wandosell, J. Díaz-Nido, and J. Avila, “Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3,” Biochemical Journal, vol. 372, no. 1, pp. 129–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Kim, J. Liu, and A. R. Kimmel, “The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification,” Cell, vol. 99, no. 4, pp. 399–408, 1999. View at Google Scholar · View at Scopus
  15. K. Itoh, T. L. Tang, B. G. Neel, and S. Y. Sokol, “Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase,” Development, vol. 121, no. 12, pp. 3979–3988, 1995. View at Google Scholar · View at Scopus
  16. L. Ruel, M. Bourouis, P. Heitzler, V. Pantesco, and P. Simpson, “Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch,” Nature, vol. 362, no. 6420, pp. 557–560, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Frame and P. Cohen, “GSK3 takes centre stage more than 20 years after its discovery,” Biochemical Journal, vol. 359, no. 1, pp. 1–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Grimes and R. S. Jope, “The multifaceted roles of glycogen synthase kinase 3β in cellular signaling,” Progress in Neurobiology, vol. 65, no. 4, pp. 391–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/Factor A,” EMBO Journal, vol. 9, no. 8, pp. 2431–2438, 1990. View at Google Scholar · View at Scopus
  20. F. Mukai, K. Ishiguro, Y. Sano, and S. C. Fujita, “Aternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β,” Journal of Neurochemistry, vol. 81, no. 5, pp. 1073–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Dajani, E. Fraser, S. M. Roe et al., “Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition,” Cell, vol. 105, no. 6, pp. 721–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Ter Haar, J. T. Coll, D. A. Austen, H. M. Hsiao, L. Swenson, and J. Jain, “Structure of GSK3β reveals a primed phosphorylation mechanism,” Nature Structural Biology, vol. 8, no. 7, pp. 593–596, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Noble, E. Planel, C. Zehr et al., “Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6990–6995, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Bain, L. Plater, M. Elliott et al., “The selectivity of protein kinase inhibitors: a further update,” Biochemical Journal, vol. 408, no. 3, pp. 297–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Fraser, N. Young, R. Dajani et al., “Identification of the Axin and Frat binding region of glycogen synthase kinase-3,” Journal of Biological Chemistry, vol. 277, no. 3, pp. 2176–2185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Dajani, E. Fraser, S. M. Roe et al., “Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex,” EMBO Journal, vol. 22, no. 3, pp. 494–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. M. Wang, C. J. Fiol, A. A. DePaoli-Roach, and P. J. Roach, “Glycogen synthase kinase-3β is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14566–14574, 1994. View at Google Scholar · View at Scopus
  28. A. J. Harwood, “Regulation of GSK-3: a cellular multiprocessor,” Cell, vol. 105, no. 7, pp. 821–824, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Sutherland, I. A. Leighton, and P. Cohen, “Inactivation of glycogen synthase kinase-3β by phosphorylation: new kinase connections in insulin and growth-factor signalling,” Biochemical Journal, vol. 296, no. 1, pp. 15–19, 1993. View at Google Scholar · View at Scopus
  30. V. Stambolic and J. R. Woodgett, “Mitogen inactivation of glycogen synthase kinase-3β in intact cells via serine 9 phosphorylation,” Biochemical Journal, vol. 303, no. 3, pp. 701–704, 1994. View at Google Scholar · View at Scopus
  31. S. Frame, P. Cohen, and R. M. Biondi, “A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation,” Molecular Cell, vol. 7, no. 6, pp. 1321–1327, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Delcommenne, C. Tan, V. Gray, L. Rue, J. Woodgett, and S. Dedhar, “Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11211–11216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Fang, S. X. Yu, Y. Lu, R. C. Bast, J. R. Woodgett, and G. B. Mills, “Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11960–11965, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Cardona-Gomez, M. Perez, J. Avila, L. M. Garcia-Segura, and F. Wandosell, “Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus,” Molecular and Cellular Neuroscience, vol. 25, no. 3, pp. 363–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Ding, W. Xia, J. C. Liu et al., “Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin,” Molecular Cell, vol. 19, no. 2, pp. 159–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Thornton, G. Pedraza-Alva, B. Deng et al., “Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation,” Science, vol. 320, no. 5876, pp. 667–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Sayas, M. T. Moreno-Flores, J. Avila, and F. Wandosell, “The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation,” Journal of Biological Chemistry, vol. 274, no. 52, pp. 37046–37052, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Lesort, R. S. Jope, and G. V. W. Johnson, “Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3β and Fyn tyrosine kinase,” Journal of Neurochemistry, vol. 72, no. 2, pp. 576–584, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Hartigan, W. C. Xiong, and G. V. W. Johnson, “Glycogen synthase kinase 3β is tyrosine phosphorylated by PYK2,” Biochemical and Biophysical Research Communications, vol. 284, no. 2, pp. 485–489, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Kim, A. Harwood, and A. R. Kimmel, “Receptor-dependent and tyrosine phosphatase-mediated inhibition of GSK3 regulates cell fate choice,” Developmental Cell, vol. 3, no. 4, pp. 523–532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Cole, S. Frame, and P. Cohen, “Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event,” Biochemical Journal, vol. 377, no. 1, pp. 249–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Cohen and M. Goedert, “GSK3 inhibitors: development and therapeutic potential,” Nature Reviews Drug Discovery, vol. 3, no. 6, pp. 479–487, 2004. View at Google Scholar · View at Scopus
  43. I. Buch, D. Fishelovitch, N. London, B. Raveh, H. J. Wolfson, and R. Nussinov, “Allosteric regulation of glycogen synthase kinase 3β: a theoretical study,” Biochemistry, vol. 49, no. 51, pp. 10890–10901, 2010. View at Publisher · View at Google Scholar
  44. D. Simón, M. J. Benitez, A. Gimenez-Cassina et al., “Pharmacological inhibition of GSK-3 is not strictly correlated with a decrease in tyrosine phosphorylation of residues 216/279,” Journal of Neuroscience Research, vol. 86, no. 3, pp. 668–674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. R. Muñoz-Montaño, F. J. Moreno, J. Avila, and J. Díaz-Nido, “Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons,” FEBS Letters, vol. 411, no. 2-3, pp. 183–188, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Takashima, T. Honda, K. Yasutake et al., “Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid β peptide (25-35) enhances phosphorylation of tau in hippocampal neurons,” Neuroscience Research, vol. 31, no. 4, pp. 317–323, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. R. T. Moon, A. D. Kohn, G. V. De Ferrari, and A. Kaykas, “WNT and β-catenin signalling: diseases and therapies,” Nature Reviews Genetics, vol. 5, no. 9, pp. 691–701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, “β-catenin is a target for the ubiquitin-proteasome pathway,” EMBO Journal, vol. 16, no. 13, pp. 3797–3804, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Castaño, P. R. Gordon-Weeks, and R. M. Kypta, “The neuron-specific isoform of glycogen synthase kinase-3β is required for axon growth,” Journal of Neurochemistry, vol. 113, no. 1, pp. 117–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Li, H. Yuan, C. D. Weaver et al., “Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1,” EMBO Journal, vol. 18, no. 15, pp. 4233–4240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Yost, G. H. Farr, S. B. Pierce, D. M. Ferkey, M. M. Chen, and D. Kimelman, “GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis,” Cell, vol. 93, no. 6, pp. 1031–1041, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. W. H. Stoothoff, J.-H. Cho, R. P. McDonald, and G. V.W. Johnson, “FRAT-2 preferentially increases glycogen synthase kinase 3β-mediated phosphorylation of primed sites, which results in enhanced tau phosphorylation,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 270–276, 2005. View at Publisher · View at Google Scholar
  53. R. Van Amerongen, M. Nawijn, J. Franca-Koh et al., “Frat is dispensable for canonical Wnt signaling in mammals,” Genes and Development, vol. 19, no. 4, pp. 425–430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Y. Chou, S. L. Howng, T. S. Cheng et al., “GSKIP is homologous to the axin GSK3β interaction domain and functions as a negative regulator of GSK3β,” Biochemistry, vol. 45, no. 38, pp. 11379–11389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. D. C. Alonso, B. Li, I. Grundke-Iqbal, and K. Iqbal, “Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8864–8869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. W. Noble, V. Olm, K. Takata et al., “Cdk5 is a key factor in tau aggregation and tangle formation in vivo,” Neuron, vol. 38, no. 4, pp. 555–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Sengupta, Q. Wu, I. Grundke-Iqbal, K. Iqbal, and T. J. Singh, “Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5,” Molecular and Cellular Biochemistry, vol. 167, no. 1-2, pp. 99–105, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Nishimura, Y. Yang, and B. Lu, “PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila,” Cell, vol. 116, no. 5, pp. 671–682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Amit, A. Hatzubai, Y. Birman et al., “Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway,” Genes and Development, vol. 16, no. 9, pp. 1066–1076, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. S. J. Liu, A. H. Zhang, H. L. Li et al., “Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory,” Journal of Neurochemistry, vol. 87, no. 6, pp. 1333–1344, 2003. View at Google Scholar · View at Scopus
  61. C. Twomey and J. V. McCarthy, “Presenilin-1 is an unprimed glycogen synthase kinase-3β substrate,” FEBS Letters, vol. 580, no. 17, pp. 4015–4020, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. P. M. Soutar, W.-Y. Kim, R. Williamson et al., “Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain,” Journal of Neurochemistry, vol. 115, no. 4, pp. 974–983, 2010. View at Publisher · View at Google Scholar
  63. M. Takahashi, K. Tomizawa, R. Kato et al., “Localization and developmental changes of τ protein kinase I/glycogen synthase kinase-3β in rat brain,” Journal of Neurochemistry, vol. 63, no. 1, pp. 245–255, 1994. View at Google Scholar · View at Scopus
  64. B. J. Eickholt, F. S. Walsh, and P. Doherty, “An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling,” Journal of Cell Biology, vol. 157, no. 2, pp. 211–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. F. Q. Zhou, J. Zhou, S. Dedhar, Y. H. Wu, and W. D. Snider, “NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC,” Neuron, vol. 42, no. 6, pp. 897–912, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Watcharasit, G. N. Bijur, J. W. Zmijewski et al., “Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7951–7955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. G. N. Bijur and R. S. Jope, “Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria,” Neuroreport, vol. 14, no. 18, pp. 2415–2419, 2003. View at Google Scholar · View at Scopus
  68. C. Morel, S. M. Carlson, F. M. White, and R. J. Davis, “Mcl-1 integrates the opposing actions of signaling pathways that mediate survival and apoptosis,” Molecular and Cellular Biology, vol. 29, no. 14, pp. 3845–3852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Gimenez-Cassina, F. Lim, T. Cerrato, G. M. Palomo, and J. Diaz-Nido, “Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3,” Journal of Biological Chemistry, vol. 284, no. 5, pp. 3001–3011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Cohen and S. Frame, “The renaissance of GSK3,” Nature Reviews Molecular Cell Biology, vol. 2, no. 10, pp. 769–776, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Xu, N. G. Kim, and B. M. Gumbiner, “Regulation of protein stability by GSK3 mediated phosphorylation,” Cell Cycle, vol. 8, no. 24, pp. 4032–4039, 2009. View at Google Scholar · View at Scopus
  72. J. Avila, J. J. Lucas, M. Pérez, and F. Hernández, “Role of tau protein in both physiological and pathological conditions,” Physiological Reviews, vol. 84, no. 2, pp. 361–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. G. N. Bijur and R. S. Jope, “Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 37436–37442, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. V. F. Taelman, R. Dobrowolski, J.-L. Plouhinec et al., “Wnt signaling requires sequestration of Glycogen Synthase Kinase 3 inside multivesicular endosomes,” Cell, vol. 143, no. 7, pp. 1136–1148, 2010. View at Publisher · View at Google Scholar
  75. P. Goñi-Oliver, J. J. Lucas, J. Avila, and F. Hernández, “N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22406–22413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Goñi-Oliver, J. Avila, and F. Hernández, “Calpain-mediated truncation of GSK-3 in post-mortem brain samples,” Journal of Neuroscience Research, vol. 87, no. 5, pp. 1156–1161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Abe and M. Takeichi, “NMDA-receptor activation induces calpain-mediated beta-catenin cleavages for triggering gene expression,” Neuron, vol. 53, no. 3, pp. 387–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. A. D. Kandasamy and R. Schulz, “Glycogen synthase kinase-3β is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts,” Cardiovascular Research, vol. 83, no. 4, pp. 698–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Cohen, “The coordinated control of metabolic pathways by broad-specificity protein kinases and phosphatases,” Current Topics in Cellular Regulation, vol. 27, pp. 23–37, 1985. View at Google Scholar · View at Scopus
  80. D. A. E. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, “Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B,” Nature, vol. 378, no. 6559, pp. 785–789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  81. R. J. Crowder and R. S. Freeman, “Glycogen synthase kinase-3β activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal,” Journal of Biological Chemistry, vol. 275, no. 44, pp. 34266–34271, 2000. View at Google Scholar · View at Scopus
  82. L. Mai, R. S. Jope, and X. Li, “BDNF-mediated signal transduction is modulated by GSK3β and mood stabilizing agents,” Journal of Neurochemistry, vol. 82, no. 1, pp. 75–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. X. He, J.-P. Saint-Jeanneti, J. R. Woodgett, H. E. Varmas, and I. B. Dawld, “Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos,” Nature, vol. 374, no. 6523, pp. 617–622, 1995. View at Google Scholar
  84. E. Siegfried, T. B. Chou, and N. Perrimon, “Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate,” Cell, vol. 71, no. 7, pp. 1167–1179, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. P. C. Salinas, “Signaling at the vertebrate synapse: new roles for embryonic morphogens?” Journal of Neurobiology, vol. 64, no. 4, pp. 435–445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. X. He, M. Semenov, K. Tamai, and X. Zeng, “LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way,” Development, vol. 131, no. 8, pp. 1663–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. R. van Amerongen and R. Nusse, “Towards an integrated view of Wnt signaling in development,” Development, vol. 136, no. 19, pp. 3205–3214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. E. M. Hur and F. Q. Zhou, “GSK3 signalling in neural development,” Nature Reviews Neuroscience, vol. 11, pp. 539–551, 2010. View at Google Scholar
  89. X. Zeng, K. Tamai, B. Doble et al., “A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation,” Nature, vol. 438, no. 7069, pp. 873–877, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Niehrs and J. Shen, “Regulation of Lrp6 phosphorylation,” Cellular and Molecular Life Sciences, vol. 67, pp. 2551–2562, 2010. View at Google Scholar
  91. N. G. Kim, C. Xu, and B. M. Gumbiner, “Identification of targets of the Wnt pathway destruction complex in addition to β-catenin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5165–5170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Hsu, L. Zeng, and F. Costantini, “Identification of a domain of axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3439–3445, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. J. M. Seeling, J. R. Miller, R. Gil, R. T. Moon, R. White, and D. M. Virshup, “Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A,” Science, vol. 283, no. 5410, pp. 2089–2091, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Beato and J. Klug, “Steroid hormone receptors: an update,” Human Reproduction Update, vol. 6, no. 3, pp. 225–236, 2000. View at Google Scholar · View at Scopus
  95. M. Beato and A. Sánchez-Pacheco, “Interaction of steroid hormone receptors with the transcription initiation complex,” Endocrine Reviews, vol. 17, no. 6, pp. 587–609, 1996. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Mendez, I. Azcoitia, and L. M. Garcia-Segura, “Interdependence of oestrogen and insulin-like growth factor-I in the brain: potential for analysing neuroprotective mechanisms,” Journal of Endocrinology, vol. 185, no. 1, pp. 11–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Mendez, I. N. Azcoitia, and L. M. Garcia-Segura, “Estrogen receptor alpha forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain,” Molecular Brain Research, vol. 112, no. 1-2, pp. 170–176, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. O. Varea, J. J. Garrido, A. Dopazo, P. Mendez, L. M. Garcia-Segura, and F. Wandosell, “Estradiol activates β-catenin dependent transcription in neurons,” PLoS ONE, vol. 4, no. 4, Article ID e5153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. O. Varea, M. A. Arevalo, J. J. Garrido, L. M. Garcia-Segura, F. Wandosell, and P. Mendez, “Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system,” Steroids, vol. 75, no. 8-9, pp. 565–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Tigyi, D. J. Fischer, A. Sebök, F. Marshall, D. L. Dyer, and R. Miledi, “Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic AMP signaling,” Journal of Neurochemistry, vol. 66, no. 2, pp. 549–558, 1996. View at Google Scholar · View at Scopus
  101. O. Kranenburg, M. Poland, F. P. G. Van Horck, D. Drechsel, A. Hall, and W. H. Moolenaar, “Activation of RhoA by lysophosphatidic acid and Gα(12/13) subunits in neuronal cells: induction of neurite retraction,” Molecular Biology of the Cell, vol. 10, no. 6, pp. 1851–1857, 1999. View at Google Scholar · View at Scopus
  102. J. Chun, E. J. Goetzl, T. Hla et al., “International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature,” Pharmacological Reviews, vol. 54, no. 2, pp. 265–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. M. E. Lin, D. R. Herr, and J. Chun, “Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance,” Prostaglandins and Other Lipid Mediators, vol. 91, no. 3-4, pp. 130–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. C. L. Sayas, M. T. Moreno-Flores, J. Avila, and F. Wandosell, “The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation,” Journal of Biological Chemistry, vol. 274, no. 52, pp. 37046–37052, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. C. L. Sayas, J. Avila, and F. Wandosell, “Glycogen synthase kinase-3 is activated in neuronal cells by Gα12 and Gα13 by Rho-independent and Rho-dependent mechanisms,” Journal of Neuroscience, vol. 22, no. 16, pp. 6863–6875, 2002. View at Google Scholar
  106. C. L. Sayas, J. Ávila, and F. Wandosell, “Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 144–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. U. Beffert, G. Morfini, H. H. Bock, H. Reyna, S. T. Brady, and J. Herz, “Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3β,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49958–49964, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. J. A. Del Río, C. González-Billault, J. M. Ureña et al., “MAP1B is required for netrin 1 signaling in neuronal migration and axonal guidance,” Current Biology, vol. 14, no. 10, pp. 840–850, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. C. González-Billault, J. A. Del Río, J. M. Ureña et al., “A role of MAP1B in reelin-dependent neuronal migration,” Cerebral Cortex, vol. 15, no. 8, pp. 1134–1145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Martínez, A. Castro, and M. Medina, Glycogen Synthase Kinase 3 (GSK-3) and Its Inhibitors-Drug discovery and Development, Wiley Series, Drug Discovery and Development, John Wiley & Sons, New York, NY, USA, 2006.
  111. P. S. Klein and D. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8455–8459, 1996. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Li-Smerin, E. S. Levitan, and J. W. Johnson, “Free intracellular Mg concentration and inhibition of NMDA responses in cultured rat neurons,” Journal of Physiology, vol. 533, no. 3, pp. 729–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Chen, L. D. Huang, Y. M. Jiang, and H. K. Manji, “The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3,” Journal of Neurochemistry, vol. 72, no. 3, pp. 1327–1330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Rosenberg, “The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?” Cellular and Molecular Life Sciences, vol. 64, no. 16, pp. 2090–2103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. R. S. Jope, “Anti-bipolar therapy: mechanism of action of lithium,” Molecular Psychiatry, vol. 4, no. 2, pp. 117–128, 1999. View at Google Scholar · View at Scopus
  116. J. D. York, J. W. Ponder, and P. W. Majerus, “Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 5149–5153, 1995. View at Publisher · View at Google Scholar · View at Scopus
  117. W. J. Ray, E. S. Szymanki, and L. Ng, “The binding of lithium and of anionic metabolites to phosphoglucomutase,” Biochimica et Biophysica Acta, vol. 522, no. 2, pp. 434–442, 1978. View at Google Scholar · View at Scopus
  118. A. Shaldubina, G. Agam, and R. H. Belmaker, “The mechanism of lithium action: state of the art, ten years later,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 25, no. 4, pp. 855–866, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. T. D. Gould and H. K. Manji, “Signaling networks in the pathophysiology and treatment of mood disorders,” Journal of Psychosomatic Research, vol. 53, no. 2, pp. 687–697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. C. J. Phiel, C. A. Wilson, V. M. Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer's disease amyloid-β peptides,” Nature, vol. 423, no. 6938, pp. 435–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. X. Li, G. N. Bijur, and R. S. Jope, “Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection,” Bipolar Disorders, vol. 4, no. 2, pp. 137–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. M. K. Rowe, C. Wiest, and D. M. Chuang, “GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder,” Neuroscience and Biobehavioral Reviews, vol. 31, no. 6, pp. 920–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. S. D. Yang, J. S. Yu, T. T. Lee, C. C. Yang, M. H. Ni, and Y. Y. Yang, “Dysfunction of protein kinase FA/GSK-3α in lymphocytes of patients with schizophrenic disorder,” Journal of Cellular Biochemistry, vol. 59, no. 1, pp. 108–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Kozlovsky, R. H. Belmaker, and G. Agam, “Low GSK-3β immunoreactivity in postmortem frontal cortex of schizophrenic patients,” American Journal of Psychiatry, vol. 157, no. 5, pp. 831–833, 2000. View at Publisher · View at Google Scholar · View at Scopus
  125. T. V. Lipina, O. Kaidanovich-Beilin, S. Patel et al., “Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3,” Synapse, vol. 65, no. 3, pp. 234–248, 2011. View at Publisher · View at Google Scholar
  126. J. J. Pei, T. Tanaka, Y. C. Tung, E. Braak, K. Iqbal, and I. Grundke-Iqbal, “Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 1, pp. 70–78, 1997. View at Google Scholar · View at Scopus
  127. K. Leroy, A. Boutajangout, M. Authelet, J. R. Woodgett, B. H. Anderton, and J. P. Brion, “The active form of glycogen synthase kinase-3β is associated with granulovacuolar degeneration in neurons in Alzheimers's disease,” Acta Neuropathologica, vol. 103, no. 2, pp. 91–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Medina and J. Avila, “Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer's disease,” Current Pharmaceutical Design, vol. 16, no. 25, pp. 2790–2798, 2010. View at Google Scholar
  129. C. Hooper, R. Killick, and S. Lovestone, “The GSK3 hypothesis of Alzheimer's disease,” Journal of Neurochemistry, vol. 104, no. 6, pp. 1433–1439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Muyllaert, A. Kremer, T. Jaworski et al., “Glycogen synthase kinase-3β, or a link between amyloid and tau pathology?” Genes, Brain and Behavior, vol. 7, supplement 1, pp. 57–66, 2008. View at Publisher · View at Google Scholar
  131. A. Takashima, K. Noguchi, G. Michel et al., “Exposure of rat hippocampal neurons to amyloid β peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β,” Neuroscience Letters, vol. 203, no. 1, pp. 33–36, 1996. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Ferreira, Q. Lu, L. Orecchio, and K. S. Kosik, “Selective phosphorylation of adult tau isoforms in mature hippocampal neurons exposed to fibrillar aβ,” Molecular and Cellular Neurosciences, vol. 9, no. 3, pp. 220–234, 1997. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Takashima, K. Noguchi, K. Sato, T. Hoshino, and K. Imahori, “tau Protein kinase I is essential for amyloid β-protein-induced neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 16, pp. 7789–7793, 1993. View at Google Scholar · View at Scopus
  134. J. Busciglio, A. Lorenzo, J. Yeh, and B. A. Yankner, “β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding,” Neuron, vol. 14, no. 4, pp. 879–888, 1995. View at Google Scholar · View at Scopus
  135. M. Pérez, E. Ribe, A. Rubio et al., “Characterization of a double (amyloid precursor protein-tau) transgenic: tau phosphorylation and aggregation,” Neuroscience, vol. 130, no. 2, pp. 339–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. E. M. Ribé, M. Pérez, B. Puig et al., “Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice,” Neurobiology of Disease, vol. 20, no. 3, pp. 814–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. A. E. Aplin, G. M. Gibb, J. S. Jacobsen, J. M. Gallo, and B. H. Anderton, “In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3β,” Journal of Neurochemistry, vol. 67, no. 2, pp. 699–707, 1996. View at Google Scholar · View at Scopus
  138. E. Rockenstein, M. Torrance, A. Adame et al., “Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid precursor protein phosphorylation,” Journal of Neuroscience, vol. 27, no. 8, pp. 1981–1991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. F. Hernández and J. Avila, “Tauopathies,” Cellular and Molecular Life Sciences, vol. 64, no. 17, pp. 2219–2233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Medina, “Recent developments in tau-based therapeutics for neurodegenerative diseases,” Recent Patents on CNS Drug Discovery, vol. 6, no. 1, pp. 20–30, 2011. View at Publisher · View at Google Scholar
  141. A. Caccamo, S. Oddo, L. X. Tran, and F. M. LaFerla, “Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles,” American Journal of Pathology, vol. 170, no. 5, pp. 1669–1675, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. R. V. Bhat, J. Shanley, M. P. Correll et al., “Regulation and localization of tyrosine phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11074–11079, 2000. View at Google Scholar · View at Scopus
  143. S. Nonaka and D. M. Chuang, “Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats,” NeuroReport, vol. 9, no. 9, pp. 2081–2084, 1998. View at Google Scholar · View at Scopus
  144. S. H. Koh, A. R. Yoo, D. I. Chang, S. J. Hwang, and S. H. Kim, “Inhibition of GSK-3 reduces infarct volume and improves neurobehavioral functions,” Biochemical and Biophysical Research Communications, vol. 371, no. 4, pp. 894–899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. G. Garcea, M. M. Manson, C. P. Neal et al., “Glycogen synthase kinase-3 beta; A new target in pancreatic cancer?” Current Cancer Drug Targets, vol. 7, no. 3, pp. 209–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. S. H. Obligado, O. Ibraghimov-Beskrovnaya, A. Zuk, L. Meijer, and P. J. Nelson, “CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases,” Kidney International, vol. 73, no. 6, pp. 684–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Dewhurst, S. B. Maggirwar, G. Schifitto, H. E. Gendelman, and H. A. Gelbard, “Glycogen synthase kinase 3 beta (GSK-3β) as a therapeutic target in neuroAIDS,” Journal of Neuroimmune Pharmacology, vol. 2, no. 1, pp. 93–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Dugo, M. Collin, and C. Thiemermann, “Glycogen synthase kinase 3β as a target for the therapy of shock and inflammation,” Shock, vol. 27, no. 2, pp. 113–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. R. S. Jope, C. J. Yuskaitis, and E. Beurel, “Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics,” Neurochemical Research, vol. 32, no. 4-5, pp. 577–595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Miyashita, M. Nakada, A. Shakoori et al., “An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3β,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 10, pp. 1114–1122, 2009. View at Publisher · View at Google Scholar
  151. D. K. Thotala, D. E. Hallahan, and E. M. Yazlovitskaya, “Inhibition of glycogen synthase kinase 3β attenuates neurocognitive dysfunction resulting from cranial irradiation,” Cancer Research, vol. 68, no. 14, pp. 5859–5868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Mishra, “Glycogen synthase kinase 3 beta: can it be a target for oral cancer,” Molecular Cancer, vol. 9, p. 144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Medina and A. Castro, “Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic,” Current Opinion in Drug Discovery and Development, vol. 11, no. 4, pp. 533–543, 2008. View at Google Scholar · View at Scopus
  154. T. del Ser, “Phase IIa clinical trial on Alzheimer’s disease with NP12, a GSK-3 inhibitor,” Alzheimers Dementia, vol. 6, p. S147, 2010. View at Google Scholar