Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012, Article ID 165021, 6 pages
http://dx.doi.org/10.1155/2012/165021
Review Article

Microglia in Alzheimer Brain: A Neuropathological Perspective

Department of Pathology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA

Received 31 January 2012; Accepted 19 February 2012

Academic Editor: Lee-Way Jin

Copyright © 2012 Robert E. Mrak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. del Rio Hortega and W. Penfield, “Cerebral cicatrix: the reaction of neuroglia and microglia to brain wounds,” Bulletin of the Johns Hopkins Hospital, vol. 41, pp. 278–282, 1997. View at Google Scholar
  2. G. G. Glenner, “Congophilic microangiopathy in the pathogenesis of alzheimer's syndrome (presenile dementia),” Medical Hypotheses, vol. 5, no. 11, pp. 1231–1236, 1979. View at Google Scholar · View at Scopus
  3. V. M. Vostrikov, “lektronno-tsitokhimicheskoe issledovanie mikroglii pri bolezni Al'tsgeimera i senil'noi dementsii,” Zhurnal Nevropatologii i Psikhiatrii Imeni S-S-Korsakova, vol. 85, pp. 974–976, 1985. View at Google Scholar
  4. J. M. Rozemuller, P. Eikelenboom, and F. C. Stam, “Role of microglia in plaque formation in senile dementia of the alzheimer type. an immunohistochemical study,” Virchows Archiv Abteilung B Cell Pathology, vol. 51, no. 3, pp. 247–254, 1986. View at Google Scholar · View at Scopus
  5. D. W. Dickson, J. Farlo, P. Davies, H. Crystal, P. Fuld, and S. H. C. Yen, “Alzheimer's disease. a double-labeling immunohistochemical study of senile plaques,” American Journal of Pathology, vol. 132, no. 1, pp. 86–101, 1988. View at Google Scholar · View at Scopus
  6. J. Wegiel, K. C. Wang, M. Tarnawski, and B. Lach, “Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation,” Acta Neuropathologica, vol. 100, no. 4, pp. 356–364, 2000. View at Google Scholar · View at Scopus
  7. S. Bahmanyar, G. A. Higgins, and D. Goldgaber, “Localization of amyloid β protein messenger RNA in brains from patients with Alzheimer's disease,” Science, vol. 237, no. 4810, pp. 77–80, 1987. View at Google Scholar
  8. W. S. T. Griffin, L. C. Stanley, C. Ling et al., “Brain interleukin 1 and s-100 immunoreactivity are elevated in down syndrome and alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 19, pp. 7611–7615, 1989. View at Google Scholar · View at Scopus
  9. D. Goldgaber, H. W. Harris, T. Hla et al., “Interleukin 1 regulates synthesis of amyloid β-protein precursor mrna in human endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 19, pp. 7606–7610, 1989. View at Google Scholar · View at Scopus
  10. J. Bauer, S. Strauss, U. Schreiter-Gasser et al., “Interleukin-6 and α-2-macroglobulin indicate an acute-phase state in alzheimer's disease cortices,” Febs Letters, vol. 285, no. 1, pp. 111–114, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. E. A. Van Der Wal, F. Gomez-Pinilla, and C. W. Cotman, “Transforming growth factor-β1 is in plaques in alzheimer and down pathologies,” Neuroreport, vol. 4, no. 1, pp. 69–72, 1993. View at Google Scholar · View at Scopus
  12. H. Akiyama, K. Ikeda, M. Katoh, E. G. McGeer, and P. L. McGeer, “Expression of mrp14, 27e10, interferon-α and leukocyte common antigen by reactive microglia in postmortem human brain tissue,” Journal of Neuroimmunology, vol. 50, no. 2, pp. 195–201, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Yamada, M. A. Horisberger, N. Kawaguchi, I. Moroo, and T. Toyoda, “Immunohistochemistry using antibodies to α-interferon and its induced protein, mxa, in alzheimer's and parkinson's disease brain tissues,” Neuroscience Letters, vol. 181, no. 1-2, pp. 61–64, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. D. M. Araujo, “Induction of immune system mediators in the hippocampal formation in alzheimer's and parkinson's diseases: selective effects on specific interleukins and interleukin receptors,” Neuroscience, vol. 61, no. 4, pp. 745–754, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Nissl, “Ueber einige Beziehungen zwischen Nervenzellerkrankungen und glioesen Erscheinungen bei verschiedenen Psychosen,” Archiv fur Psychiatrie, vol. 32, no. 2, pp. 1–21, 1899. View at Google Scholar
  16. S. U. Kim and J. De Vellis, “Microglia in health and disease,” Journal of Neuroscience Research, vol. 81, no. 3, pp. 302–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. C. Stanley, R. E. Mrak, R. C. Woody et al., “Glial cytokines as neuropathogenic factors in hiv infection: pathogenic similarities to alzheimer's disease,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 3, pp. 231–238, 1994. View at Google Scholar · View at Scopus
  18. A. F. Carpenter, P. W. Carpenter, and W. R. Markesbery, “Morphometric analysis of microglia in alzheimer's disease,” Journal of Neuropathology and Experimental Neurology, vol. 52, no. 6, pp. 601–608, 1993. View at Google Scholar · View at Scopus
  19. E. Ulvestad, K. Williams, R. Matre, H. Nyland, A. Olivier, and J. Antel, “Fc receptors for igg on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 1, pp. 27–36, 1994. View at Google Scholar · View at Scopus
  20. C. A. Colton, C. Abel, J. Patchett, J. Keri, and J. Yao, “Lectin staining of cultured cns microglia,” Journal of Histochemistry and Cytochemistry, vol. 40, no. 4, pp. 505–512, 1992. View at Google Scholar · View at Scopus
  21. H. Mannoji, H. Yeger, and L. E. Becker, “A specific histochemical marker (lectin ricinus communis agglutinin-1) for normal human microglia, and application to routine histopathology,” Acta Neuropathologica, vol. 71, no. 3-4, pp. 341–343, 1986. View at Google Scholar · View at Scopus
  22. W. J. Streit and G. W. Kreutzberg, “Lectin binding by resting and reactive microglia,” Journal of Neurocytology, vol. 16, no. 2, pp. 249–260, 1987. View at Google Scholar · View at Scopus
  23. M. L. C. Maat-Schieman, A. J. Rozemuller, S. G. Van Duinen, J. Haan, P. Eikelenboom, and R. A. C. Roos, “Microglia in diffuse plaques in hereditary cerebral hemorrhage with amyloidosis (dutch). an immunohistochemical study,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 5, pp. 483–491, 1994. View at Google Scholar · View at Scopus
  24. H. Muhleisen, J. Gehrmann, and R. Meyermann, “Reactive microglia in creutzfeldt-jakob disease,” Neuropathology and Applied Neurobiology, vol. 21, no. 6, pp. 505–517, 1995. View at Google Scholar · View at Scopus
  25. J. Scholz, A. Abele, C. Marian et al., “Low-dose methotrexate reduces peripheral nerve injury-evoked spinal microglial activation and neuropathic pain behavior in rats,” Pain, vol. 138, no. 1, pp. 130–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W. J. Streit, H. Braak, Q. S. Xue, and I. Bechmann, “Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in alzheimer's disease,” Acta Neuropathologica, vol. 118, no. 4, pp. 475–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. O. Lopes, D. L. Sparks, and W. J. Streit, “Microglial dystrophy in the aged and alzheimer's disease brain is associated with ferritin immunoreactivity,” Glia, vol. 56, no. 10, pp. 1048–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Li, L. Liu, D. Liu et al., “Microglial activation by uptake of fdna via a scavenger receptor,” Journal of Neuroimmunology, vol. 147, no. 1-2, pp. 50–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Xiang, V. Haroutunian, L. Ho, D. Purohit, and G. M. Pasinetti, “Microglia activation in the brain as inflammatory biomarker of alzheimer's disease neuropathology and clinical dementia,” Disease Markers, vol. 22, no. 1-2, pp. 95–102, 2006. View at Google Scholar · View at Scopus
  30. A. K. Vehmas, C. H. Kawas, W. F. Stewart, and J. C. Troncoso, “Immune reactive cells in senile plaques and cognitive decline in alzheimer's disease,” Neurobiology of Aging, vol. 24, no. 2, pp. 321–331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Braak and E. Braak, “Neuropathological stageing of alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Google Scholar · View at Scopus
  32. W. S. T. Griffin, Jin Gen Sheng, G. W. Roberts, and R. E. Mrak, “Interleukin-1 expression in different plaque types in alzheimer's disease: significance in plaque evolution,” Journal of Neuropathology and Experimental Neurology, vol. 54, no. 2, pp. 276–281, 1995. View at Google Scholar · View at Scopus
  33. J. G. Sheng, R. E. Mrak, and W. S. T. Griffin, “Microglial interleukin-1α expression in brain regions in alzheimer's disease: correlation with neuritic plaque distribution,” Neuropathology and Applied Neurobiology, vol. 21, no. 4, pp. 290–301, 1995. View at Google Scholar · View at Scopus
  34. J. G. Sheng, W. S. T. Griffin, M. C. Royston, and R. E. Mrak, “Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in alzheimer's disease,” Neuropathology and Applied Neurobiology, vol. 24, no. 4, pp. 278–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Rozemuller, P. Eikelenboom, F. C. Stam, K. Beyreuther, and C. L. Masters, “A4 protein in alzheimer's disease: primary and secondary cellular events in extracellular amyloid deposition,” Journal of Neuropathology and Experimental Neurology, vol. 48, no. 6, pp. 674–691, 1989. View at Google Scholar · View at Scopus
  36. J. G. Sheng, R. E. Mrak, and W. S. T. Griffin, “Neuritic plaque evolution in alzheimer's disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms,” Acta Neuropathologica, vol. 94, no. 1, pp. 1–5, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. I. R. A. Mackenzie, C. Hao, and D. G. Munoz, “Role of microglia in senile plaque formation,” Neurobiology of Aging, vol. 16, no. 5, pp. 797–804, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. Ryu and J. G. McLarnon, “A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed alzheimer's disease brain,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9 A, pp. 2911–2925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Fukumoto, A. Asami-Odaka, N. Suzuki, and T. Iwatsubo, “Association of aβ40-positive senile plaques with microglial cells in the brains of patients with alzheimer's disease and in non-demented aged individuals,” Neurodegeneration, vol. 5, no. 1, pp. 13–17, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Wilcock and C. A. Colton, “Anti-amyloid-β immunotherapy in alzheimer's disease: relevance of transgenic mouse studies to clinical trials,” Journal of Alzheimer's Disease, vol. 15, no. 4, pp. 555–569, 2008. View at Google Scholar · View at Scopus
  41. Y. M. Arends, C. Duyckaerts, J. M. Rozemuller, P. Eikelenboom, and J. J. Hauw, “Microglia, amyloid and dementia in alzheimer disease: a correlative study,” Neurobiology of Aging, vol. 21, no. 1, pp. 39–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. D. R. Thal, T. Arendt, G. Waldmann et al., “Progression of neurofibrillary changes and phf-τ in end-stage alzheimer's disease is different from plaque and cortical microglial pathology,” Neurobiology of Aging, vol. 19, no. 6, pp. 517–525, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Li, L. Liu, S. W. Barger, and W. S. T. Griffin, “Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-mapk pathway,” Journal of Neuroscience, vol. 23, no. 5, pp. 1605–1611, 2003. View at Google Scholar · View at Scopus
  44. J. G. Sheng, X. Q. Zhou, R. E. Mrak, and W. S. T. Griffin, “Progressive neuronal injury associated with amyloid plaque formation in alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 7, pp. 714–717, 1998. View at Google Scholar · View at Scopus
  45. J. C. Troncoso, R. R. Sukhov, C. H. Kawas, and V. E. Koliatsos, “In situ labeling of dying cortical neurons in normal aging and in alzheimer's disease: correlations with senile plaques and disease progression,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 11, pp. 1134–1142, 1996. View at Google Scholar · View at Scopus
  46. L. G. Sheffield, J. G. Marquis, and N. E. J. Berman, “Regional distribution of cortical microglia parallels that of neurofibrillary tangles in alzheimer's disease,” Neuroscience Letters, vol. 285, no. 3, pp. 165–168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. J. G. Sheng, R. E. Mrak, and W. S. T. Griffin, “Glial-neuronal interactions in alzheimer disease: progressive association of il-1α+ microglia and s100β+ astrocytes with neurofibrillary tangle stages,” Journal of Neuropathology and Experimental Neurology, vol. 56, no. 3, pp. 285–290, 1997. View at Google Scholar · View at Scopus
  48. A. Alzheimer, “Ueber eigenartige Krankheitsfaelle des spaeteren Alters,” Zeitschrift fur Die Gesamte Neurologie und Psychiatrie, vol. 4, pp. 356–385, 1911. View at Google Scholar
  49. C. S. Lobsiger and D. W. Cleveland, “Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease,” Nature Neuroscience, vol. 10, no. 11, pp. 1355–1360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Moisse and M. J. Strong, “Innate immunity in amyotrophic lateral sclerosis,” Biochimica Et Biophysica Acta, vol. 1762, no. 11-12, pp. 1083–1093, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. A. Sargsyan, P. N. Monk, and P. J. Shaw, “Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis,” Glia, vol. 51, no. 4, pp. 241–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. F. Tai, N. Pavese, A. Gerhard et al., “Microglial activation in presymptomatic Huntington's disease gene carriers,” Brain, vol. 130, no. 7, pp. 1759–1766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Sawada, K. Imamura, and T. Nagatsu, “Role of cytokines in inflammatory process in parkinson's disease,” Journal of Neural Transmission, Supplement, no. 70, pp. 373–381, 2006. View at Google Scholar · View at Scopus
  54. P. L. McGeer and E. G. McGeer, “Inflammation and neurodegeneration in parkinson's disease,” Parkinsonism and Related Disorders, vol. 10, no. 1, pp. S3–S7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Vila, V. Jackson-Lewis, C. Guégan et al., “The role of glial cells in parkinson's disease,” Current Opinion in Neurology, vol. 14, no. 4, pp. 483–489, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Iseki, W. Marui, H. Akiyama, K. Uéda, and K. Kosaka, “Degeneration process of lewy bodies in the brains of patients with dementia with lewy bodies using α-synuclein-immunohistochemistry,” Neuroscience Letters, vol. 286, no. 1, pp. 69–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Ishizawa, T. Komori, S. Sasaki, N. Arai, T. Mizutani, and T. Hirose, “Microglial activation parallels system degeneration in multiple system atrophy,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 1, pp. 43–52, 2004. View at Google Scholar · View at Scopus
  58. R. E. Mrak and W. S. T. Griffin, “Common inflammatory mechanisms in lewy body disease and alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 8, pp. 683–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. J. G. Sheng, R. E. Mrak, and W. S. T. Griffin, “Enlarged and phagocytic, but not primed, interleukin-1α-immunoreactive microglia increase with age in normal human brain,” Acta Neuropathologica, vol. 95, no. 3, pp. 229–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. R. E. Mrak and W. S. T. Griffin, “Glia and their cytokines in progression of neurodegeneration,” Neurobiology of Aging, vol. 26, no. 3, pp. 349–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. W. S. T. Griffin, J. G. Sheng, S. M. Gentleman, D. I. Graham, R. E. Mrak, and G. W. Roberts, “Microglial interleukin-1α expression in human head injury: correlations with neuronal and neuritic p-amyloid precursor protein expression,” Neuroscience Letters, vol. 176, no. 2, pp. 133–136, 1994. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Valente, A. Gella, X. Fernàndez-Busquets, M. Unzeta, and N. Durany, “Immunohistochemical analysis of human brain suggests pathological synergism of alzheimer's disease and diabetes mellitus,” Neurobiology of Disease, vol. 37, no. 1, pp. 67–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. W. J. Streit and D. L. Sparks, “Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits,” Journal of Molecular Medicine, vol. 75, no. 2, pp. 130–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. J. G. Sheng, F. A. Boop, R. E. Mrak, and W. S. T. Griffin, “Increased neuronal β-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1α immunoreactivity,” Journal of Neurochemistry, vol. 63, no. 5, pp. 1872–1879, 1994. View at Google Scholar · View at Scopus
  65. L. C. Stanley, R. E. Mrak, R. C. Woody et al., “Glial cytokines as neuropathogenic factors in hiv infection: pathogenic similarities to alzheimer's disease,” Journal of Neuropathology and Experimental Neurology, vol. 53, no. 3, pp. 231–238, 1994. View at Google Scholar · View at Scopus
  66. I. R. A. Mackenzie and L. A. Miller, “Senile plaques in temporal lobe epilepsy,” Acta Neuropathologica, vol. 87, no. 5, pp. 504–510, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. M. M. Esiri, S. C. Biddolph, and C. S. Morris, “Prevalence of Alzheimer plaques in AIDS,” Journal of Neurology, Neurosurgery & Psychiatyry, vol. 65, no. 1, pp. 29–33, 1998. View at Google Scholar