Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012 (2012), Article ID 245038, 18 pages
http://dx.doi.org/10.1155/2012/245038
Research Article

Japanese Alzheimer’s Disease and Other Complex Disorders Diagnosis Based on Mitochondrial SNP Haplogroups

Toyo University, Izumino 1-1-1, Ora-gun Itakuracho, Gunma 374-0193, Japan

Received 11 January 2012; Revised 14 March 2012; Accepted 30 March 2012

Academic Editor: Bruce G. Pollock

Copyright © 2012 Shigeru Takasaki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Wallace, “Mitochondrial diseases in man and mouse,” Science, vol. 283, no. 5407, pp. 1482–1488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Vila and S. Przedborski, “Targeting programmed cell death in neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 365–375, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. W. Taylor and D. M. Turnbull, “Mitochondrial DNA mutations in human disease,” Nature Reviews Genetics, vol. 6, no. 5, pp. 389–402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. F. H. Lin, R. Lin, H. M. Wisniewski et al., “Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer's brains,” Biochemical and Biophysical Research Communications, vol. 182, no. 1, pp. 238–246, 1992. View at Google Scholar · View at Scopus
  5. J. M. Shoffner, M. D. Brown, A. Torroni et al., “Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients,” Genomics, vol. 17, no. 1, pp. 171–184, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kosel, R. Egensperger, P. Mehraein, and M. B. Graeber, “No association of mutations at nucleotide 5460 of mitochondrial NADH dehydrogenase with Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 203, no. 2, pp. 745–749, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Mayr-Wohlfart, C. Paulus, and G. Rödel, “Mitochondrial DNA mutations in multiple sclerosis patients with severe optic involvement,” Acta Neurologica Scandinavica, vol. 94, no. 3, pp. 167–171, 1996. View at Google Scholar · View at Scopus
  8. N. M. Schnopp, S. Kösel, R. Egensperger, and M. B. Graeber, “Regional heterogeneity of mtDNA heteroplasmy in Parkinsonian brain,” Clinical Neuropathology, vol. 15, no. 6, pp. 348–352, 1996. View at Google Scholar · View at Scopus
  9. D. K. Simon, R. Mayeux, K. Marder, N. W. Kowall, M. F. Beal, and D. R. Johns, “Mitochondrial DNA mutations in complex I and tRNA genes in Parkinson's disease,” Neurology, vol. 54, no. 3, pp. 703–709, 2000. View at Google Scholar · View at Scopus
  10. M. Tanaka, N. Fuku, T. Takeyasu et al., “Golden mean to longevity: rareness of mitochondrial cytochrome b variants in centenarians but not in patients with Parkinson's disease,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 347–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. T. M. Dawson and V. L. Dawson, “Molecular pathways of neurodegeneration in Parkinson's disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. O. A. Ross, R. McCormack, L. D. Maxwell et al., “mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson's disease in the Irish,” Experimental Gerontology, vol. 38, no. 4, pp. 397–405, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. W. Lustbader, M. Cirilli, C. Lin et al., “ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease,” Science, vol. 304, no. 5669, pp. 448–452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Niemi, J. S. Moilanen, M. Tanaka et al., “A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects,” European Journal of Human Genetics, vol. 13, no. 2, pp. 166–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Alexe, N. Fuku, E. Bilal et al., “Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population,” Human Genetics, vol. 121, no. 3-4, pp. 347–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Fuku, K. S. Park, Y. Yamada et al., “Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians,” American Journal of Human Genetics, vol. 80, no. 3, pp. 407–415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. F. Chinnery, C. Mowbray, S. K. Patel et al., “Mitochondrial DNA haplogroups and type 2 diabetes: a study of 897 cases and 1010 controls,” Journal of Medical Genetics, vol. 44, no. 6, article e80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Kim, T. K. Yoo, D. J. Shin et al., “Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population,” PLoS ONE, vol. 3, no. 5, Article ID e2211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Maruszak, J. A. Canter, M. Styczyńska, C. Zekanowski, and M. Barcikowska, “Mitochondrial haplogroup H and Alzheimer's disease—is there a connection?” Neurobiology of Aging, vol. 30, no. 11, pp. 1749–1755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Feder, I. Blech, O. Ovadia et al., “Differences in mtDNA haplogroup distribution among 3 Jewish populations alter susceptibility to T2DM complications,” BMC Genomics, vol. 9, article 198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. C. H. Wu and J. W. McLarty, Neural Networks and Genome Informatics, Elsevier Science, New York, NY, USA, 2000.
  23. S. Takasaki, “Mitochondrial haplogroups associated with Japanese centenarians, Alzheimer's patients, Parkinson's patients, type 2 diabetic patients and healthy non-obese young males,” Journal of Genetics and Genomics, vol. 36, no. 7, pp. 425–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Saxena, P. I. W. de Bakker, K. Singer et al., “Comprehensive association testing of common mitochondrial DNA variation in metabolic disease,” American Journal of Human Genetics, vol. 79, no. 1, pp. 54–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Bilal, R. Rabadan, G. Alexe et al., “Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan,” PLoS ONE, vol. 3, no. 6, Article ID e2421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Tanaka, V. M. Cabrera, A. M. González et al., “Mitochondrial genome variation in Eastern Asia and the peopling of Japan,” Genome Research, vol. 14, no. 10, pp. 1832–1850, 2004. View at Google Scholar · View at Scopus
  27. C. Herrnstadt, J. L. Elson, E. Fahy et al., “Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups,” American Journal of Human Genetics, vol. 70, no. 5, pp. 1152–1171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. P. Kong, Y. G. Yao, C. Sun, H. J. Bandelt, C. L. Zhu, and Y. P. Zhang, “Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences,” American Journal of Human Genetics, vol. 73, no. 3, pp. 671–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Takasaki, Y. Kawamura, and A. Konagaya, “Selecting effective siRNA sequences by using radial basis function network and decision tree learning,” BMC Bioinformatics, vol. 7, supplement 5, p. S22, 2006. View at Google Scholar · View at Scopus