Table of Contents Author Guidelines Submit a Manuscript
International Journal of Alzheimer’s Disease
Volume 2012, Article ID 483469, 8 pages
http://dx.doi.org/10.1155/2012/483469
Clinical Study

A Two-Study Comparison of Clinical and MRI Markers of Transition from Mild Cognitive Impairment to Alzheimer’s Disease

1Division of Geriatric Psychiatry, New York State Psychiatric Institute, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, Unit 126, New York, NY 10032, USA
2Gertrude H. Sergievsky Center and Taub Institute for Research in Alzheimer’s Disease and The Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
3Department of Biostatistics, Columbia University School of Public Health, 722 West 168th Street, NY 10032, USA

Received 25 August 2011; Revised 20 October 2011; Accepted 25 October 2011

Academic Editor: Anthony Bayer

Copyright © 2012 D. P. Devanand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999. View at Google Scholar · View at Scopus
  2. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Erratum: Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 6, p. 760, 1999. View at Google Scholar
  3. D. P. Devanand, X. Liu, M. H. Tabert et al., “Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease,” Biological Psychiatry, vol. 64, no. 10, pp. 871–879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. H. Tabert, J. J. Manly, X. Liu et al., “Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment,” Archives of General Psychiatry, vol. 63, no. 8, pp. 916–924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Tabert, S. M. Albert, L. Borukhova-Milov et al., “Functional deficits in patients with mild cognitive impairment: prediction of AD,” Neurology, vol. 58, no. 5, pp. 758–764, 2002. View at Google Scholar · View at Scopus
  6. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. P. Devanand, G. Pradhaban, X. Liu et al., “Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease,” Neurology, vol. 68, no. 11, pp. 828–836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Landau, D. Harvey, C. M. Madison et al., “Comparing predictors of conversion and decline in mild cognitive impairment,” Neurology, vol. 75, no. 3, pp. 230–238, 2010. View at Publisher · View at Google Scholar
  9. C. M. Clark, J. A. Schneider, B. J. Bedell et al., “Use of florbetapir-PET for imaging beta-amyloid pathology,” Journal of the American Medical Association, vol. 305, no. 3, pp. 275–283, 2011. View at Google Scholar
  10. O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” The Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Visser, F. Verhey, D. L. Knol et al., “Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study,” The Lancet Neurology, vol. 8, no. 7, pp. 619–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Schmand, H. M. Huizenga, and W. A. van Gool, “Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer's disease,” Psychological Medicine, vol. 40, no. 1, pp. 135–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Winblad, K. Palmer, M. Kivipelto et al., “Mild cognitive impairment—beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment,” Journal of Internal Medicine, vol. 256, no. 3, pp. 240–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Consensus report of the Working Group, “Molecular and biochemical markers of Alzheimer's disease,” Neurobiology of Aging, vol. 19, no. 2, pp. 109–116, 1998, The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. View at Google Scholar
  15. Consensus report of the Working Group, “Molecular and Biochemical Markers of Alzheimer's Disease,” Neurobiology of Aging, vol. 19, no. 3, p. 285, 1998, Erratum: The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. View at Google Scholar
  16. P. J. Brown, D. P. Devanand, X. Liu, and E. Caccappolo, “Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease,” Archives of General Psychiatry, vol. 68, no. 6, pp. 617–626, 2011. View at Publisher · View at Google Scholar
  17. G. B. Frisoni, N. C. Fox, C. R. Jack Jr., P. Scheltens, and P. M. Thompson, “The clinical use of structural MRI in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 2, pp. 67–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. S. Schneider, J. C. Nelson, C. M. Clary et al., “An 8-week multicenter, parallel-group, double-blind, placebo-controlled study of sertraline in elderly outpatients with major depression,” American Journal of Psychiatry, vol. 160, no. 7, pp. 1277–1285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Dubois, H. H. Feldman, C. Jacova et al., “Revising the definition of Alzheimer's disease: a new lexicon,” The Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 270–279, 2011. View at Publisher · View at Google Scholar
  21. M. van Gils, J. Koikkalainen, J. Mattila, S. K. Herukka, J. Lötjönen, and H. Soininen, “Discovery and use of efficient biomarkers for objective disease state assessment in Alzheimer's disease,” in Proceedings of the IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 2886–2889, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Haense, K. Herholz, W. J. Jagust, and W. D. Heiss, “Performance of FDG PET for detection of Alzheimer's disease in two independent multicentre samples (NEST-DD and ADNI),” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 3, pp. 259–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. A. Llano, G. Laforet, and V. Devanarayan, “Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 25, no. 1, pp. 73–84, 2011. View at Publisher · View at Google Scholar
  24. M. Ewers, C. Walsh, J. Q. Trojanowski, and North American Alzheimer's Disease Neuroimaging Initiative (ADNI), “Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance,” Neurobiology of Aging. In press.
  25. C. Misra, Y. Fan, and C. Davatzikos, “Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI,” NeuroImage, vol. 44, no. 4, pp. 1415–1422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Cuingnet, E. Gerardin, J. Tessieras et al., “Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database,” NeuroImage, vol. 56, no. 2, pp. 766–781, 2011. View at Publisher · View at Google Scholar
  27. R. Wolz, R. A. Heckemann, P. Aljabar et al., “Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI,” NeuroImage, vol. 52, no. 1, pp. 109–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Murphy, D. Holland, M. Donohue et al., “Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls,” NeuroImage, vol. 53, no. 4, pp. 1310–1317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. H. Tabert, X. Liu, R. L. Doty et al., “A 10-item smell identification scale related to risk for Alzheimer's disease,” Annals of Neurology, vol. 58, no. 1, pp. 155–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Mintun, G. N. Larossa, Y. I. Sheline et al., “[11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease,” Neurology, vol. 67, no. 3, pp. 446–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. De Meyer, F. Shapiro, H. Vanderstichele et al., “Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people,” Archives of Neurology, vol. 67, no. 8, pp. 949–956, 2010. View at Publisher · View at Google Scholar
  32. N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at Scopus